Lawrence Livermore National Laboratory



Today, 80 percent of the world’s total primary energy demand is met with fossil fuels, which emit significant quantities of carbon dioxide and methane, the two primary greenhouse gases, into the atmosphere. This situation has implications for our geopolitical energy security, for the global climate and ecosystem, and for human health and welfare. Energy researchers say an energy technology revolution and breakthrough concepts are needed to “de-carbonize” the world’s energy system and stabilize the climate.

A pickup truck filled with fusion fuel has the equivalent energy of 2 million metric tons of coal, or 10 million barrels of oil.

One such concept being studied at LLNL is a laser-based inertial fusion energy (IFE) system that would build on the inertial confinement fusion (ICF) experiments conducted on NIF. If successful, IFE promises safe, carbon-free, and sustainable energy.

The nuclear power plants in use around the world today use fission, or the splitting of heavy atoms such as uranium, to release energy for electricity. A fusion power plant, on the other hand, will generate energy by fusing atoms of deuterium and tritium, two isotopes of hydrogen—the lightest element. Deuterium is extracted from abundant seawater, and tritium is produced by the transmutation of lithium, a common element in the Earth’s crust and oceans.

Sun Rising Over Power Lines

When the hydrogen nuclei fuse under the intense temperatures and pressures in the NIF target capsule, a helium nucleus is formed and a small amount of mass lost in the reaction is converted to a large amount of energy according to Einstein’s famous formula E=mc2.

Needed: Energy Gain

Harnessing the energy of the sun and stars to meet the Earth’s energy needs has been a scientific and engineering challenge for decades. While a self-sustaining fusion burn leading to fusion ignition has been achieved on NIF for brief periods under experimental conditions, the total amount of energy that went into powering the lasers was far greater than the amount of energy it generated.

What’s needed next, for fusion energy to supply a continuous stream of electricity, is net energy gain—more energy produced by the fusion reactions than the energy required to operate the facility. The National Ignition Facility was the first ICF facility to demonstrate ignition—as much or more energy produced than the amount of energy delivered to the target. NIF reached that milestone on Dec. 5, 2022, when an ICF experiment generated more than 3 megajoules (MJ) of fusion energy—50 percent more than the 2.05 MJ of ultraviolet laser energy deposited on the target (see The Age of Ignition). Four subsequent NIF experiments also achieved ignition; the most recent ignition shot, in February 2024, produced more than twice the laser energy delivered. While the level of energy used to achieve target gain greater than unity, or “scientific breakeven,” is much less than the energy required to drive the lasers, NIF’s fusion targets are potentially capable of releasing 10 to 100 times more energy than the laser energy required to initiate the fusion reaction.

Chart Showing the Yield from Five NIF Ignition Shots
LLNL has achieved fusion ignition on NIF five times to date. Credit: Brian Chavez (Click on image to expand)

Achieving ignition will provide the data and insights, such as the energy requirements, target designs, and laser drivers, needed to make decisions on whether and how to pursue IFE. An IFE power plant will have to operate at high repetition rates (5 to 20 pulses per second) while delivering an energy gain of five to 100 per pulse. Recently LLNL designed and developed the world’s first petawatt (quadrillion-watt) laser system—the High-Repetition-Rate Advanced Petawatt Laser System (HAPLS)—capable of operating at 10 pulses per second. HAPLS is now supporting high energy density, materials science, medicine, biology, and industry experiments at the ELI-Beamline Facility in the Czech Republic.

And in the wake of the repeated ignition success at NIF, LLNL is now developing an IFE Institutional Initiative to explore the requirements for an IFE power plant. In December, 2023, the Laboratory was named by the U.S. Department of Energy to lead the IFE Science and Technology Accelerated Research for Fusion Innovation and Reactor Engineering (STARFIRE) Hub, a four-year, $16-million project to accelerate IFE science and technology.

A fusion power plant would produce no greenhouse gases or other noxious emissions, operate continuously to meet demand, and would not require geological disposal of radioactive waste. A fusion power plant would also present no danger of a meltdown.

Because nuclear fusion offers the potential for virtually unlimited safe and environmentally benign energy, the U.S. Department of Energy has made fusion a key element in the nation’s long-term energy plans, with investments in both IFE and magnetic fusion energy and with the ability to leverage the investments from the National Nuclear Security Administration’s defense programs that support NIF.

More Information:

The Age of Ignition

“LLNL-Led Team Receives DOE Award to Establish Inertial Fusion Energy Hub,” NIF & Photon Science News, December 7, 2023

“Nuclear Fusion and the Future of Energy,” NIF & Photon Science News, October 12, 2023

“Ignition Gives U.S. ‘Unique Opportunity’ to Lead World’s IFE Research,” NIF & Photon Science News, February 2, 2023

“DOE Workshop Examines Inertial Fusion Energy Research Needs,” NIF & Photon Science News, July 13, 2022

“White House summit celebrates fusion milestones, discusses ‘bold’ 10-year plan for commercialization,” LLNL News Release, March 29, 2022

“Workshop Examines Prospects, Challenges for Inertial Fusion Energy,” NIF & Photon Science News, March 9, 2022

“Milestone Shot Enhances Future of Stockpile Stewardship and Fusion Energy Science,” NIF & Photon Science News, February 15, 2022

“Self-heating plasmas offer hope for energy from fusion,” Nature, January 26, 2022

“Reports Recommend Stepped-Up U.S. Investment in Fusion Energy,” NIF & Photon Science News, March 8, 2021

Powering the Future: Fusion & Plasmas (PDF download), Fusion Energy Science Advisory Committee, December, 2020

Plasma Science: Enabling Technology, Sustainability, Security, and Exploration, National Academies of Sciences, Engineering, and Medicine, May, 2020

A Community Plan for Fusion Energy and Discovery Plasma Sciences, (PDF download) American Physical Society Division of Plasma Physics, March, 2020

Livermore Inertial Fusion Energy References