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Summary 

•  Radiative shock waves observed from  integrated ignition experiments 
performed with cryogenic thermonuclear DT fuel  

—  Stagnation pressure > 100 Gbar with convergence ratio ~ 30 and 
fuel densites reaching > 500g/cc 

 
•  200 - 300 ps after peak compression, the x-ray emission from a 

spherically expanding radiative shock wave is observed. 
—  Expansion velocity of 300 km/s 
— Measured ~ 9 keV x-ray luminosity of ~3 GW 
—  Simulations are consistent with observed velocity and luminosity 

and indicate that the observed shock is radiative.  

Capsule implosions in NIF hohlraums produce radiative shocks 
that are of interest for astrophysics and implosion performance 



Radiative shocks are of interest to a variety of 
astrophysical phenomena and have been created 
using energetic high power lasers 
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Radiative shocks –   
•  During a supernova within a stellar interior. 
•  Early time ballistic expansion of ejecta interacting with stellar atmosphere. 
•  Supernova remnants. 
•  Bow shocks of high velocity stellar jets. 

Previous experimental work on radiative shocks in laser driven shock tubes: 
J.C. Bozier et al. (1986), P.A. Keiter et al. (2002), S. Bouquet et al. (2004), 
Reighart et al. (2006), M. Gonzalez et al. (2006), R. P. Drake et al. (2011), C. C. Kuranz B13 11:30 
am, Monday. 
 
Previous work on laser produced blast waves: 
J. Grun et al. (1991), K. Keilty et al. (2000), T. Ditmire et al. (2000), K. Shigemori et al. (2000), J. 
Edwards et al. (2001), A.D. Edens et al. (2004-5), J.F. Hansen et al. (2006), A. S. Moore (2008) 
 
Laboratory astrophysics review: 
B. A. Remington, R. P. Drake, D. D. Ryutov  Rev. Mod. Phys. Vol. 78. No 3 (2006) 

This work describes and details a radiative shock driven by the expansion 
of a dense shell ( ρo ~ 500 g/cc) of material into a hot (300 eV) dense (1 g/

cc) in falling medium.  



Indirect drive implosions on the National Ignition 
Facility  
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•  192 laser beams 
•  1.9 MJ of energy at 351 nm. 
•  500 TW of power. 
•  Suite of x-ray and nuclear diagnostics. 
•  State of the art target fabrication and 

positioning. 

Brief overview of the National 
Ignition Facility (NIF) 
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Multiple diagnostics and different experimental 
platforms are used to measure the conditions of the 
implosion 
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•  Neutron yield ~5x1014 

•  Core Tion ~ 2-4 keV 

•  Core radius ~25 µm 

•  τBW ~ 200 ps 

ni ( Yield, Tion,  Volume, τBW
 ) 

PHS = ni + ne( )KTi !100 Gb



X-ray emission from a spherical blast wave is 
observed at NIF and in astrophysical events 
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Supernova remnant G11.2-0.3 
at t = 2600 years after peak 

compression 

In Chandra's X-ray image. A shell of heated 
gas from the outer layers of the exploded 
star surrounds the pulsar and emits lower-
energy X-rays 

NIF implosions with Gbar stagnation 
pressures create a strongly emitting 
out going shock wave (~9 keV)  
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X-ray emission is temporally and spatially resolved 
using gated micro channel plate detector 

Peak x-ray 
emission 

Shock 
appears 

Emission 
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going shock 

Emission from out going 
shock wave observed ~ 200 
ps after peak x-ray emission 

•  Temporal gain width 40 – 
100 ps. 

•  Spatial resolution ~10 µm.  

•  Flat fielded response of 
detector. 

•  Measure emission vs. 
time, gives burn width. 

•  Emission from shock 
observed for ~ 200 ps. 

Gated detector cross 
calibrated using image plate 
emission data (J / counts). 

Time (ps) 

S. Glenn et al. RSI 81, 10E539 (2010) 



X-ray emission from outward going shock observed 
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Ring of x-ray emission appears 200 ps after peak x-ray emission 

At stagnation the hot core and 
dense shell of DT fuel are 
surround by in-falling ablator 
plasma. 

After stagnation a shock 
propagates outwards ahead of 
the expanding compressed  
Material. 
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Shock velocity observed to be ~280-330 km/s 

Δt = 47 ps	
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Normalized radial emission profiles 

Radius of shock found by tracking 
edge of emission. 

Velocity approximately constant over 
2x in radius 

•  Emission drops below detectable 
level ~500 ps after peak emission. 

•  Strong shock still propagating. 

•  Thin shell of emission indicative of 
raditiave shock. 

•  Width of emission ~ 10 µm 
(resolution element) ∝ vτ = 30 µm 
with τ ~ 100 ps and v = 300 km/s. 

Shock radius vs. time 

Dense assembled shell 
and core at peak 
compression  

Neutron 
Image 

1.6 MJ / 142 Gbar data   
VExp = 305 ± 47 km/s 

1.4 MJ / 80 Gbar data   
VExp = 280 ± 69 km/s 



Radiation hydrodynamic simulations show x-ray 
emission becomes visible as shock propagates into 
optically thinner ablation front. 
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Shock propagates through dense 
shell and into ablation front 

Temperature of the shocked material 
rises to .9 keV at ablation front  
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Simulations of 150 Gbar implosions indicate similar 
shock expansion velocities and the formation of a 
strongly radiating shock 
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1.6 MJ / 142 Gbar data   
VExp = 305 ± 47 km/s 

1.6 MJ / 150 Gbar 
HYDRA simulation 
Vsim = 356 km/s 

Simulations reproduce velocity of 
observed emission  

•  Simulations show constant velocity 
in time out to at least 1500 ps. 

•  Ablation front radius depends on 
shock velocity and shell width. 

•  Initial simulations require temporal 
offset. 

1.4 MJ / 80 Gbar data   
VExp = 280 ± 69 km/s 

Simulations show a limb brightened 
ring of emission  

Simulations show a ring of emission 
 expanding at nearly constant velocity. 

Simulated Radiance 
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Post shock temperature is higher for the measured 
shock velocity due to in flowing material and 
hohlraum drive 
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Shock velocity indicates the energy imparted and 
generated by the implosion. 
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The observed shock velocity is 
indicative of energy deposited into 

the implosion. 
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The measured luminosity at ~ 9 keV incident onto 
detector is in agreement with simulated luminosity 
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•  Time averaged over 100 ps. 
•  Same filtering on hGXI as on I.P. 
•  Similar spectral response. 

Time averaged power measured 
using cross calibration from I.P. 
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Diagnostic filtering focuses the 
measurement on the spectral tail  
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The measured luminosity at ~ 9 keV incident onto 
detector is in agreement with simulated luminosity 
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*L. A. Lopez, et al. , ApJ 732:114 (18pp) 2011, May 10 

Current experiment offers and opportunity to study 
the evolution of spherical radiative shock waves 

hGXI 
(6-12 keV) 

Laboratory explosion.  Radiative shock wave interacting with CH plasma. 
Time from peak 
emission 

Chandra .5-2.1 keV emission from 6 different young supernova. 

X-ray emission is being used to  constrain the morphology and composition of 
young SNR and surrounding circumstellar medium 



Different astrophysical regimes can be studied by 
modifying the target and diagnostics 
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Shocks with higher Frad / Prad can be 
created by modifying targets 

Diagnostics and targets can be 
optimized to study evolution of shock 

with time 

•  Change filtering to look at lower 
energies. 

•  Increase temporal coverage and 
resolution. 

•  Dope targets and perform 
spectroscopy. 

Hydrodynamic evolution can be 
studied with perturbed implosions 

and medium 

1D and 2D radiography to observe 
shock emission and medium density. 

•  Directly driven targets. 

•  α heating deposition of energy.	

 2D simulation with horizontal perturbation 
Radiated energy vs. space 

20 

Target and drive can be optimized to 
study scaled hydrodynamic evolution. 
D. Ryutov et al. ApJ 518. 821-832(1999) 
S. Bouquet et al. HEDP, 6.  368-380(2010) 
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Summary 
•  A spherical radiative shock wave propagating outwards at a lab frame 

velocity of 300 km/s into an in-falling medium, has been observed from 
the expansion phase of an integrated implosion experiment. 

•  The luminosity and velocity of the out going shock can be accurately 
diagnosed and agree with radiation hydrodynamic simulations. 

•  The dynamics of our implosion experiments may offer opportunities to 
study the evolution and morphology of young supernova remnants. 
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Thanks to the NIF team! 
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Radiation transport can alter the up and downstream 
material properties changing shock front structure 
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•  Mass, momentum and energy are conserved across the shock front. 

•  When the radiative flux F1 = σT2
4  > ρoU1

3 / 2 inflowing material energy 
flux, radiation energy flux must be considered. 
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Early high energy x-ray emission 
dominated by Bremsstrahlung 

•  Shell of ejecta drives shock into H-
He CSM. 

•  High energy x-ray emission arises 
from from forward shock. 
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Ratio of measured luminosities should 
equal ratio of scaled luminosities  

Does physics from laboratory shock 
scale to supernova luminosity? 

V. V. Dwarkadas and J. Gruszko Mon. Not. R. Astron. Soc. 419, 1515-1524 

Prompt hard x-ray emission from supernova created 
by forward ejecta driven shock wave   



Correct order of magnitude for scaled luminosities 
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front 

Stellar model of 1993J x-ray 
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   R	
  (m)	
   t	
  (s)	
   ρ	
  (g/cc)	
   A	
  (mp)	
   Z	
  
SN	
  1993	
   2.1E+13	
   1036800	
   3.17731E-­‐16	
   1.3	
   1.1	
  
NIF	
   0.00013	
   3.00E-­‐10	
   10	
   6.5	
   2.5	
  

Θm	

 2.44444E+21	
  

Θs	

 4.23592E+20	
  

Θm/Qs	

 5.770748066	
  

Shell 

Ratio of measured to scaled 
luminosity approximately equal. 

Laboratory experiment appears to 
capture the essential physics 



Different astrophysical regimes can be studied by 
modifying the target and diagnostics 

NIF / JLF 2013 

Diagnostics can be optimized to 
study evolution of shock with time 

•  Filtering to look at lower energies. 

•  1D and 2D radiography to observe 
shock emission and medium density. 
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