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  NIF has acquired a wealth of exquisite data at conditions 
never before achieved in the laboratory  
•  laser-plasma interactions at unique power densities and scale 

lengths  

•  tailored high temperature thermal radiation environments  

•  multi-terapascal shock propagation  

•  greater than 10,000-fold compression, and near petapascal 
pressures 

•  fusion neutron and charged particle production and transport at 
high temperatures and densities 

  New phenomena have been observed 
•  plasma mediated cross-beam power transfer,  

•  suppression of Raman backscattering  

•  non-LTE hohlraum kinetics 

•  possible equation-of-state, opacity, kinetic, hydrodynamic, and 
nuclear anomalies 

An international 
workshop was 
organized to discuss 
the science that has 
been learned in the 
National Ignition 
Campaign, identify 
new science 
questions that have 
arisen, and begin to 
lay the lines of 
experimental and 
theoretical inquiry 
that would build on 
and address these 
over a multi-year 
time frame 
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  Engage and expand the community of scientists 
interested in exploring science of ignition on NIF 

  Form the basis for future efforts to explore 
underlying physics needed to understand 
ignition designs for a range of applications 

  Identify paths leading to improved integrated 
design capabilities 

  Maximize the utility of NIC results for broader 
ICF/IFE community 
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  Identify the key physics that underlies indirect drive inertial fusion ignition; 

  Review and summarize our understanding of this key physics, including 
new insights and questions raised by recent experimental results; 
•  Assess what we know and how well we know it including key areas of 

disagreement between data and models 

  Propose research directions that would address continuing gaps in 
understanding key physics 
•  Identify likely model deficiencies and  approaches to improving the models 
•  Identify possible experiments using HED facilities that could expedite further 

understanding 

  Assess the likely impact of each of these modeling or experimental areas 
in furthering progress in understanding ignition science  
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  Attendance by invitation – ~100 divided roughly 
half National Lab ICF community, half broader 
community 
•  to allow ~6 panels of ~12-15 each 

  Plenary overview of NIC status and campaign 
results (half-day) 
  Parallel breakout sessions focused on physical 
processes (1½ day) 
  Plenary out briefs from breakout panels 
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1.  Laser propagation and X-ray generation 
2.  X-ray transport and ablation physics  
3.  Implosion hydrodynamics 
4.  Stagnation properties and burn 
5.  HED properties and processes: opacity, EOS, 

etc. 
6.  Integrated modeling  
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  Co-Chairs: Goldstein and Rosner 
  Steering group: Collins, Edwards, Wan, Barnes, 
Herrmann, Sangster, Wootton, Betti, Correll  
  Panel Leads: 

•  Laser propagation and X-ray generation (Rosen, Joshi) 
•  X-ray transport and ablation physics (Hammer, Meyerhofer)  
•  Implosion hydrodynamics (Hurricane, Goncharov)  
•  Stagnation properties and burn (Betti, Frenje)  
•  HED Properties and processes (Collins, Wark)  
•  Integrated modeling (Marinak, Lamb) 
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  158 registered 
•  Laser propagation and X-ray generation - 23 
•  X-ray transport and ablation physics - 16 
•  Implosion hydrodynamics - 20 
•  Stagnation properties and burn - 24 
•  HED Materials cross-cut: opacity, EOS - 29 
•  Integrated modeling - 16 

  LLNL-47, LANL-20, SNL-12, LLE-14, Other-65 

  23 International scientists from 7 countries 

  47 Academics, including 16 international  
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10 

Slower rise to peak power and longer “no-coast” 
pulses result in lower hot spot adiabat and main 
fuel r at about 85% of the ignition goal 

We are one year into the campaign to 
carry out precision optimization of 
ignition scale implosions 

We have achieved hohlraum temperatures in 
excess of the 300 eV ignition goal with hot spot 
symmetry and shock timing near ignition specs 

Mix performance boundary with more 
mass remaining than the point design will 
require thicker shells (+20-30%) to reach 
ignition velocity without mix 

Nuclear data indicates that long wavelength 
variation in the main fuel density may be 
contributing to performance degradation 
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FABS31  
on NIF 

Hohlraum Energetics 

Implosion phase  FABS31 
on NIF

Hohlraum Energetics

Assembly, burn phase  

How are we doing? 
— Good global measurements 
— LEH radius(t)? 
— n(r,t), T(r,t) ? 

nts

How are we doing? 
-Good global measurements 
-Starting to see microscopic features 
of shell and fuel during the 
implosion-  improve xray 
backlighting 

How are we doing? 
-Good global measurements 
-Beginning to see DT distribution 
-Beginning to measure mix 
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available for download at https://lasers.llnl.gov/workshops/science_of_ignition/ 
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Panel Priority Research Directions 

1. Laser propagation and 
X-ray production 

Hohlraum plasma characterization 

Electron plasma wave science 

Ion wave science 

2. X-ray transport and 
ablation physics 

Capsule x-ray drive 

Ablator hydrodynamics 

Ablator radiative coupling 

3. Implosion hydro-
dynamics 

Investigation and control of ablator front instability 

Mix in extreme high-acceleration implosions driven by multiple strong shocks 

Hotspot formation and fuel shape physics 

4. Stagnation and burn 

The origin and 3D structure of ρR asymmetries 

In-flight characteristics of the DT fuel 

Probing energy balance at stagnation 

5. HED Properties and 
Processes 

Equations of state for ultra-dense matter and conduction dominated “gas shocks” 

LTE and non-LTE opacity research for ignition 

Develop an understanding of transport and kinetic phenomena in ignition 

Nuclear science for ignition 

6. Integrated modeling  

A science-based validation campaign 

Improved modeling of hohlraum energetics 

Kinetic effects on thermonuclear yield 
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  Observations:  
•  hohlraum plasma cooler than expected;  
•  x-ray flux that matches measured implosion velocities 

doesn’t agree with x-ray flux measurements (Dante) 
•  LPI effects not included in model may contribute to low 

yields 

  Physics: LPI, non-LTE kinetics 
  Research Directions: measure hohlraum plasma 
conditions; validate high-flux model; try a hotter 
hohlraum 
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  directions identified by this panel were driven 
primarily by the discrepancy between the 
measured implosion velocities and simulations 
based on the x-ray drive measured by the Dante 
diagnostic.  
•  either the measured drive is not that “seen” by the 

capsule, or the ablation process is not being 
accurately modeled  

  Experiments recommended to resolve this 
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  Observations: the pressure drive, onset of mix, 
and the stagnation pressure are currently not 
adequately modeled 
  Physics: growth rate of ablation front 
instabilities, thermal conductivity, and 
parameterization of mix and its dependence on 
initial conditions 
  Research Directions: take apart the physics of 
the ablation front instability; experimentally study 
scaling of hot-spot mix and develop improved 
sub-grid models 
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  Observation: even when implosion modeling is tuned to 
reproduce shock timing and implosion velocity 
measurements, the observed stagnation pressure of the 
hotspot and cold fuel are significantly lower than 
predicted, resulting in low yields.  
•  most likely 3D in nature and associated with an incomplete conversion of the 

kinetic energy of fuel shell into compression of the hotspot.   
•  Low-mode ρR asymmetries can reduce the pressure at stagnation and also 

increase the onset of hotspot mix.  

  Physics: origin and growth of 3D structure  

  Research Directions: develop radiography and 
spectroscopy to better probe energy balance and density 
distribution in the hotspot and fuel at stagnation 
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  Observation: While many processes are 
represented in the simulations, they have 
generally not been experimentally tested over 
the range of conditions attained in ignition 
experiments.  
  Physics: EOS, opacity, non-LTE kinetics, strong 
shock and release states, transport, nuclear 
cross sections 
  Research Directions: concerted experimental 
benchmarking and theoretical development. 
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  Observations: current simulation capability has been 
extensively tested against experiments at Shiva, Nova 
and OMEGA, but recent experiments have clearly called 
into question the ability of the codes to predict important 
observables under NIF conditions 
•  Need for drive multipliers 
•  Hotspot pressure deficiency 
•  Neutron yields 

  Physics: EOS and opacity models, non-LTE, non-Local 
transport, non-Maxwellian distributions, barodiffusion 
  Research Directions: systematic code validation; 
benchmark hohlraum energetics model; kinetic and field 
effects on yield 
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  Improve NLTE and kinetic descriptions towards 
a better calculation of LPI (1) 
  Measure x-ray flux at the capsule (2) 
  Alternate ablator experiments (3) 
  Perform implosions at higher adiabat (3) 
  2D radiography of cold-fuel ρR variations (4) 
  Validate DT, CH (and other ablator) eos (5) 
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Crystal Ball: Aug. 2012 

Measures hohlraum-capsule 
energy coupling through the 
entire ignition laser pulse 
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Viewfactor: Aug. 2012 
Opposite LEH 

Measures the x-ray emission from the hohlraum 
as seen by the ignition capsule (is 15% low) 
 
First direct measure of the “cross-beam” transfer 
used to tune implosion symmetry 

VISAR 
measures 
shock speed 

“Open” end 

Removes one LEH 
from hohlraum 

1 mm glass 
crystal 
hemisphere p

Hard x-ray 
emission image 

Hohlraum pattern 
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1-2 ablator samples 
z-cut quartz 

D2 

Planar Ablator 

D2

visar 

Diamond 
Boron/Carbide/Nitride 
Beryllium/O/N 
Lithium Fluoride 
Graphite 
Aluminum 
Plastics 

x-ray diagnostic 

Richtmyer-Meshkov & 
Rayleigh-Taylor instability 

growth 

Mode 60 
19.8 ns 

L=60, 80um wavelength, a0=3um 

3.84mm on CCD 
Growth from optical depth 

High-Foot 

NIC low-foot 

High-Foot: 3-shock, 
higher adiabat 

implosion 
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Power simulations for several ablators 
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Target 
First experiment was on B4C ablators 
and is being used to test simulations 
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N121219 
Short 

N121210 
nominal 

N121218 
Long 

P4 

µm
  

Here we show hohlraum length scan 
effect on shell shape 
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EOS development DT, CH 
and alternative ablators 

• New QMD/Purgatorio-based 
diamond EOS  

• First B4C EOS is being 
developed 

• QMD-based Be EOS is ready 
for use. 

DT and CH Hugoniot experiments on NIF are planed for 3rd quarter 
 
First EOS data on alternate ablators at Omega in 2 months  

Diamond 

10 g/cc 
40 g/cc 80 g/cc 

Quantum-MD for thermal 
conductivities  
 
Enables intelagent 
variation of conductivities 
for sensitivity study 
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  The results of the world's first ignition 
experiments were vigorously discussed among 
~150 scientists 

  Status of the ignition program was disseminated 
-and open to challenge - in a recognized and 
recognizable scientific forum, akin to Office of 
Science "research needs workshops" 

  A broad community was invited to contribute 
their insight and participation 
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*Engineering and Physical Sciences Research Council 
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Simulated & experimental drive pressures disagree, in particular when shock or release waves 
interact with the ablation front

Ablation 
dynamics 
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ablation front 
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source at 
given Tr 

Ablator opacity 
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transmission 
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•  Measures the x-ray emission 
from the hohlraum as seen by 
the ignition capsule (is 15% low) 

•  First direct measure of the 
“cross-beam” transfer used to 
tune implosion symmetry 

“Open” end 

Removes one LEH from 
the ignition hohlraum 

Hard x-ray 
emission image 
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Jim Hammer, Omar Hurricane, Steve McClaren, et al. 
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Simulated at ~ 200µm 

αα~2.3, 380 km/s 14.5 ns 

α~1.5, 320 km/s 21.7 ns 

Simulated at min. radius 
(~50 & 30µm respectively) 
 α~2.3, 380 km/s 14.9 ns 

α~1.5, 320 km/s 22.2 ns 

N121023: 1st high-foot keyhole exhibited 
the best pole-waist symmetry ever 

Omar Hurricane 


