### Nuclear Science at NIF NIF Users Meeting Livermore, CA 11 February 2012 Lawrence Livermore National Laboratory LLNL-PRES-582193 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Dennis P. McNabb, Andy Bacher, Lee Bernstein, Jac Caggiano, Dan Casey, Charlie Cerjan, Dick Fortner, Johan Frenje, Maria Gatu-Johnson, Uwe Greife, Jim Knauer, Dawn Shaughnessy, Michael Wiescher



#### ICF can access regimes outside the reach of traditional nuclear labs



NIF and Omega unique capabilities that complement US nuclear astrophysics labs

- Plasma environment, electron screening affects
- Reactions on short-lived states, s process

LLNL-PRES-562760

The issue: Scientific success requires the complicated environment of these dynamic experiments be precisely characterized (<10%)

$$N_{signal} \propto \rho(\vec{r},t) \Phi(\vec{v},\vec{r},t) \sigma(E)$$

- If density profiles are well characterized
  - Measure signal and flux to infer nuclear cross section
- Conversely, using well-known nuclear process
  - $\blacktriangleright$  Measure signal and flux to infer  $\rho$

Signals and flux include emitted particles and nuclei (debris)

Enough to make the average astrophysicist jealous!



LLNL-PRES-562760

#### The benefit: Nuclear diagnostics are a powerful microscope into hydrodynamic conditions and internal d.o.f.'s



- lon temperature
- Mix
- Ion species separation
- Low-mode mass asymmetries
- Low-mode shock asymmetries





Lawrence Livermore National Laboratory

#### The payoff: Nuclear astrophysics at NIF

#### Potential scientific impact

- Charged-particle reactions
  - BBN
  - pp chains
  - CNO cycles
  - He-burning, neutron sources
- Neutron reactions
  - S-process
  - Excited states

#### **Diagnostic needs**

- Low energy neutron spectrometer (LENS)
- Solid Radchem Collector (SRC)





Lawrence Livermore National Laboratory

#### Nucleosynthesis reaction rates are challenging to measure or calculate



Both direct and indirect approaches are desirable



# ICF plasma environments complement accelerator experiments to directly measure charged-particle reaction rates



q

[MeV

ഗ

- Rates are low
  - Backgrounds become a problem
  - NIF data arrives "instantaneously"
- S-factor increases at low energy
  - e<sup>-</sup> screening by the target plasma
  - Also expected for high density stars
  - Not well understood source of error
  - Additional studies needed
  - NIF can make measurements WITHOUT screening







### Electron screening in accelerator measurements is particularly large for the Sun's energy-producing reaction: <sup>3</sup>He+<sup>3</sup>He

LUNA underground measurement with proton spectrum at  $E_{cm}$ =30keV

Omega laser plasma measurement with proton spectrum at  $E_{cm}$ =90keV



Low energy experiments at plasma conditions are feasible; this provides a unique opportunity to probe reaction plasma interaction



LLNL-PRES-562760

### High-neutron brightness at NIF presents new opportunities for studying s-process reactions directly



Direct measurements on targets with <1 y half-life possible



Lawrence Livermore National Laboratory

#### And perhaps step into uncharted territory and measure plasmanuclear processes and reactions on "excited" states







## While we have made excellent progress with neutron spectra > 1MeV, we need to create & characterize lower energy components

- ~30-keV neutrons are the most important for astrophysical (n,γ) reactions
- High  $\rho R_{fuel}$ : significant fraction of the neutrons scatter to thermal energies
- Spectral shape correlates with capsule confinement time



#### **Stellar Thermal Neutrons**

A low-energy neutron spectrometer is not only essential for any NIF-based (n, $\gamma$ ) measurement but also provides info about  $\tau_{confinement}$  and  $\rho R$ 

11 NI -PRES-562760

### The ideal solution is a segmented detector that can be absolutely calibrated with a neutron source





LLNL-PRES-562760

### Collecting and analyzing radioactive materials produced in implosions is often the best approach to measuring the number of nuclei produced





Lawrence Livermore National Laboratory

LLNL-PRES-562760

13

### The Solid RadioChemistry (SRC) diagnostic at NIF has generated interesting nuclear data from hohlraum debris



SRC collectors fielded on cryo DT shotsGamma spectroscopy of the collectors:

<sup>197</sup>Au(n,γ)<sup>198</sup>Au and <sup>197</sup>Au(n,2n)<sup>196</sup>Au from activated hohlraum debris

- Post-shot simulations indicate ~65% of neutron captures in the hohlraum are from <1 MeV neutrons</li>
- DT yield of 10<sup>14</sup> neutrons provides (n,γ) signal ~10X day at accelerator



## SRC needs improved efficiency and rapid retrieval or in-situ counting to meet science needs



Designs goals:

- 1. Collectors that open to a larger area inside the target chamber
- 2. In-situ counters or rapid retrieval system (<1 day half lives)
- 3. Ability to field at different distances

Collector designs including traps, biased grids, and alternate materials will be investigated.



#### NIF can deliver unique insights into nuclear astrophysics

- Unique capabilities for
  - Charged-particle reactions
  - Neutron reactions
- New diagnostics needed
  - Low-energy neutron spectrometer (LENS)
  - Solid Radio-Chemistry (SRC)
- Also needed: nuclear DIM!



The SHIVA radiochemistry extraction system – a similar system could be designed at NIF for extraction and counting of short-lived nuclides – and include more space for particle detectors.

Science productivity at NIF is a major problem – not enough shots.

Path to success is to enhance ride-along productivity and increase shot rate.



### Nuclear Astrophysics

SN la

- screening
- C, O fusion
- He-induced reactions
- electron capture

Star formation

hot CNO cycles
Ne-Ca burning

Star • pp-chains • CNO cycles

White Dwarf

- Short XRB
- hot CNO cycles Neutron
- ap-process
- rp-process
- EC rates
- pycnonuclear fusion

20

- SN II • r process
- vp process
- p process
- EC rates
- radioactivity (<sup>26</sup>AI, <sup>44</sup>Ti, <sup>56</sup>Ni, <sup>60</sup>Fe)

- Red Giant
- He-burning
- neutron sources
- s-process
- C, O fusion rates

## While we have made excellent progress with neutron spectra > 1MeV, we need to characterize lower energy components



- High  $\rho R_{fuel}$ : significant fraction of the neutrons scatter to thermal energies
- Spectral shape correlates with capsule confinement time
- Sub-MeV neutrons are the most important for astrophysical (n,γ) reactions

A LENS is not only essential for any NIF-based (n, $\gamma$ ) measurement but also provides info about  $\tau_{confinement}$ 

## The shape and magnitude of the low energy spectrum together determine the confinement and $\rho {\rm R}_{\rm fuel}$



We are working on developing a LENS right now at LBNL/UCB



Lawrence Livermore National Laboratory

2012-045806s2.ppt