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NIF and Omega unique capabilities that complement US nuclear astrophysics labs 
•  Plasma environment, electron screening affects 
•  Reactions on short-lived states, s process 

Facility for Rare Isotope Beams 
MSU, planned completion 2020 

DIANA – underground accelerator 
DUSEL, planned completion ??? 

r-process 
focus 

charged 
particle 

focus 
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  If density profiles are well characterized 
  Measure signal and flux to infer nuclear cross section 

  Conversely, using well-known nuclear process 
  Measure signal and flux to infer ρ�

 

Nsignal ∝ρ r, t( )Φ v, r, t( )σ E( )

Signals and flux include emitted particles and nuclei (debris) 
 

Enough to make the average astrophysicist jealous! 
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Examples: 

  Ion temperature  

  Mix 

  Ion species separation 

  Low-mode mass asymmetries 

  Low-mode shock asymmetries 

Neutron DS Image 

FNADS 

MRS 

nTOF 
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Potential scientific impact 

  Charged-particle reactions 
•  BBN 
•  pp chains 
•  CNO cycles 
•  He-burning, neutron sources  

  Neutron reactions 
•  S-process 
•  Excited states 

Diagnostic needs 

  Low energy neutron spectrometer 
(LENS) 

  Solid Radchem Collector (SRC) 

Red Giant 
•  He-burning 
•  neutron sources 
•  s-process  
•  C, O fusion rates 

      Star 
•  pp-chains 
•  CNO cycles 

Early Universe 
•  BBN 
•  Star formation 
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•  Extrapolate from higher energies 
•  Measurements have screening corrections 
•  Plagued by radioactive backgrounds 

Neutron capture rates on unstable 
nuclei are highly uncertain�

Charged particle rates are uncertain at 
stellar energies�

•  Models uncertain due to lack of knowledge 
•  Experiments require radioactive samples 
and are plagued by “room return” bckgrnds 

176Hf(n,γ) 

178Hf(n,γ) 

180Hf(n,γ) 

182Hf(n,γ)? 

174Hf(n,γ)? 

Data 
Models 

Courtesy of F. Kaeppler 

Both direct and indirect approaches are desirable 
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3He(3He,2p)4He 

  Rates are low 
•  Backgrounds become a problem 
•  NIF data arrives “instantaneously” 

  S-factor increases at low energy 
•  e- screening by the target plasma  
•  Also expected for high density stars 
•  Not well understood – source of error 
•  Additional studies needed 
•  NIF can make measurements 

WITHOUT screening 
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LUNA underground measurement 
with proton spectrum at Ecm=30keV 

Omega laser plasma measurement 
with proton spectrum at Ecm=90keV 

Low energy experiments at plasma conditions are feasible; this provides a unique 
opportunity to probe reaction plasma interaction 

0

0.5

1.0

0 5 10 15 20
Yi

el
d 

/ M
eV

(×106)

Proton energy [MeV]

D-3He p 

p+p+4He 

p+5Li resonance 



Lawrence Livermore National Laboratory 
LLNL-PRES-562760 

9 

•  Smaller targets, not much material needed 
•  Experiment is short, no radioactive bckgrnds 

Room return backgrounds comparable 
to accelerators at short distances�

Brightness much larger than traditional 
nuclear facilities�

•  Large NIF chamber is unique 
•  Brightness within 1 cm of capsule huge 

Direct measurements on targets with <1 y half-life possible 
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Calculations 
Plasma-induced population of  

keV excited states 
M. Chen (LLNL) vs. G. Gosselin (CEA-DAM) 

x5 

Calculations differ  
by 100-500% 

We need data ! 

We know the inverse process 
happens, but it has never 

been seen in a plasma 

169Tm 170Tm 
1/2+  stable 1-    265 d 

171Tm 
1/2+ 1.9 y 

3/2+   8.41 keV 

2-   39 keV 

3/2-   5 keV 

5b

k

m
d 

171Tm
1/2+ 1.9

k

d 1/2+ 1 9

3/2-   5 

170Tm
ble 1-    26ble 1 26

keV V 

2-   39 k

Origins of the elements 
Thulium s-process 
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•  ~30-keV neutrons are the most 
important for astrophysical (n,γ) 
reactions 

•  High ρRfuel: significant fraction of the 
neutrons scatter to thermal energies 

•  Spectral shape correlates with 
capsule confinement time 

2012-045806s2.ppt  1
1

Stellar Thermal Neutrons  

HYDRA simulations compliments of C. Cerjan 

A low-energy neutron spectrometer is not only essential for any NIF-based (n,γ)  
measurement but also provides info about τconfinement and ρR 
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NIF 
Chamber 

 
 

Scintillator testing at LBNL 
Collaboration w/UCB-NE 

LENS 

Novel plastic 
scintillators from 
N. Zaitseva s 
group 

2012-045806s2.ppt  

12 
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(n,2n) (n,γ) 169Tm 168Tm 170Tm 
93 days 129 days 

(n,2n) 

stable 

167Tm 
9 days 

Hohlraum measurement 

Astrophysics 

Irradiation experiment 

Sample fabrication 

Capsule doping 

Excited state cross sections 
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SRC Data obtained via gamma 
spectroscopy 

• Post-shot simulations indicate ~65% of 
neutron captures in the hohlraum are 
from <1 MeV neutrons 

• DT yield of 1014 neutrons provides (n,γ) 
signal ~10X day at accelerator 

• SRC collectors fielded on cryo DT shots  
• Gamma spectroscopy of the collectors: 

197Au(n,γ)198Au and 197Au(n,2n)196Au from 
activated hohlraum debris 
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Future concept Current setup (4E-4) 

Designs goals: 
1.  Collectors that open to a larger area inside the target chamber 
2.  In-situ counters or rapid retrieval system (<1 day half lives) 
3.  Ability to field at different distances  

Collector designs including traps, biased grids, and alternate materials will be investigated. 
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  Unique capabilities for 
•  Charged-particle reactions 
•  Neutron reactions 

  New diagnostics needed 
•  Low-energy neutron spectrometer 

(LENS) 
•  Solid Radio-Chemistry (SRC) 

  Also needed: nuclear DIM! 

Science productivity at NIF is a major problem – not enough shots. 
 

Path to success is to enhance ride-along productivity and increase shot rate. 

The SHIVA radiochemistry extraction 
system – a similar system could be 
designed at NIF for extraction and 
counting of short-lived nuclides – and 
include more space for particle detectors. 

Recommendation: 
Nuclear DIM 
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Star formation 

Planetary 
Nebula 

White 
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Nuclear 
Astrophysics 
 

Neutron 
 Star 
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Red Giant 
•  He-burning 
•  neutron sources 
•  s-process  
•  C, O fusion rates 

      Star 
•  pp-chains 
•  CNO cycles 

Nova 
•  hot CNO cycles 
•  Ne-Ca burning 

SN Ia 
•  screening  
•  C, O  fusion 
•  He-induced reactions 
•  electron capture 

Neeeeeeeeeuuuuuuuuuuuuuuuttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttrrrrrrrrrrrrrrrrrrrrrrrrrrooooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn NeeeeeeeNNNNeeee
 tttttttttttttttttttttttttttttttttttttttaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaarrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr  SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSStttttttttttttttttttttttttttSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

Short XRB 
•  hot CNO cycles 
•  αp-process 
•  rp-process 
•  EC rates 
•  pycnonuclear  fusion 

SN II 
•  r process 
•  νp process 
•  p process 
•  EC rates 
•  radioactivity  
  (26Al, 44Ti, 56Ni, 60Fe) 
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•  High ρRfuel: significant fraction of the neutrons scatter to thermal energies 

•  Spectral shape correlates with capsule confinement time 

•  Sub-MeV neutrons are the most important for astrophysical (n,γ) reactions 

2012-045806s2.ppt  1
8

TT neutron spectrum Stellar Thermal Neutrons  

HYDRA simulations compliments of C. Cerjan 

A LENS is not only essential for any NIF-based (n,γ)  
measurement but also provides info about τconfinement 
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2012-045806s2.ppt  1
9

Sensitivity to confinement time 

We are working on developing a LENS right now at LBNL/UCB  

HYDRA simulations compliments of C. Cerjan 

Time-of-Flight for τconf=400 ps 

per element 

256-channel array 

l


