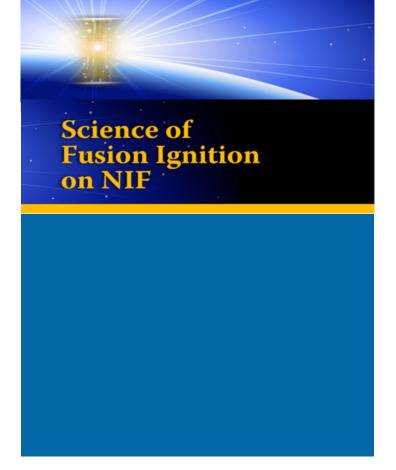
Workshop on the science of Fusion ignition on NIF: Goals and Desired Output from Panels

Bill Goldstein May 23, 2012

Lawrence Livermore National Laboratory



LLNL-PRES—558011 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Workshop goals for Indirect Drive Fusion Ignition Science

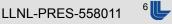
- Identify the key physics that underlies indirect drive inertial fusion ignition;
- Review and summarize our understanding of this key physics, including new insights and questions raised by recent experimental results;
 - Assess what we know and how well we know it including key areas of disagreement between data and models
- Propose research directions that would address continuing gaps in understanding key physics
 - Identify likely model deficiencies and approaches to improving the models
 - Identify possible experiments using HED facilities that could expedite further understanding
- Assess the likely impact of each of these modeling or experimental areas in furthering progress in understanding ignition science

Panel structure reflects elements of indirect drive ignition research

- Laser propagation and X-ray generation
- X-ray transport and ablation physics
- Implosion hydrodynamics
- Stagnation properties and burn
- HED Matter: opacity, EOS, etc.
- Integrated modeling

The specific goal of each panel is to identify a set of research directions

- Define the physics (the problem)
- What do we know; what is uncertain? (where are we?)
- How do we address it (the path to better and more compete understanding)
- How will it make a difference for understanding, and the ability to design and field igniting and burning systems? (impact)


Title of Panel Title of Priority Research Direction

Underlying physics to be addressed	Learned from Recent Experiments
 Identify/describe the physics process or parameter What approximations or assumptions are made in representing it in simulations? 	 How do recent experimental results bear on our understanding of this physics, and how it is represented?
Research Directions	Outcome and Potential Impact

Panel process

- Panel leads chair and facilitate
- Be respectful and constructive
- Everyone contributes
- Be brief and try to stick to the terms of reference
- Keep in mind the goals of the workshop
 - Identify underlying physics
 - Assess current state
 - Identify high impact future directions

The product is a community report; each panel to produce

- Introduction (1 Paragraph)
- Status of the physics (1 page)
 - Underlying processes and properties
 - Status of theory and modeling
 - Impact of experimental results
- Opportunities for progress (1-2 pages)
 - What are the most important uncertainties and why
- Priority research direction 1 (2 pages)
 - Introduction
 - Near term improvements and approaches to theory and modeling
 - High impact experiments on HED facilities to address uncertainties in critical physics models
 - New capabilities (diagnostics, models) needed
 - Long term goals and outlook
- Priority research direction 2,3
- Conclusions (1 page)
- Two Side-bars (with figures)

AGENDA

- May 22, Evening
 - Registration and reception
- May 23
 - Breakfast (7-8)
 - Morning Plenary Session (8-12)
 - Workshop charter, structure and deliverables
 - NIC Status and review
 - Summaries of panel scope
 - Afternoon breakout (12-5)
 - Evening session (discretionary)

- May 24
 - Breakfast (7-8)
 - Morning plenary initial report (8-9)
 - Morning breakout (9-12)
 - Afternoon breakout (1-3)
 - Afternoon plenary final report (3-5)
 - Adjourn
- May 25
 - Optional NIF tour

First day plenary session

- 8:00 Workshop Opening (Albright)
- 8:10 NNSA Welcome (Quintenz)
- 8:20 NIF Welcome (Moses)
- 8:30 Workshop goals and deliverables (Goldstein)
- 8:45 Ignition overview and status (Lindl)
- 9:45 Ignition measurements (Kilkenny)
- 10:30 Coffee Break
- 10:45 Panel Introductions
- 11:45 Lunch
- 12:00 Breakout Sessions

