University Use of NIF Science

Gilbert Collins IFSA University Use of NIF LLNL-PRES-416675

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

NIF will create ≥10³³ neutrons per cm² per second, equivalent to a supernova

NIF will create thermal plasmas at the conditions of stellar interiors

NIF generates pressures found at the center of Jupiter

NIF will produce enough x-ray flux to simulate conditions in an accretion disk

2005/01/19.19:19

NIF will access unprecedented energy densities

NIF's Pulseshaping and Burn will enable extreme solid state to fusion experiments

Stixrude, 2008

NIF's Pulseshaping and Burn will enable extreme solid state to fusion experiments

Stixrude, 2008

NIF's high energy and pulseshaping will enable extreme solid state to fusion experiments

With ignition, the regimes we will be able to access are still more extreme

VanHorn

We are just starting to develop science "platforms" to explore this new frontier of science

Astro/Nuclear Physics Ultra-Dense Matter Burning Plasmas A

S. Rose, R. Betti, J. Meyer-Ter-Vehn, S. Atzeni, G. Collins

G. Fuller, U. Greife, Z. Shayer, C. Brune, R. Boyd, L. **Bernstein**

Gupta, P. Loubeyre, L. Stixrude, S. Rose, J. Wark, G. Collins

Astro/Rad-transport

& Hydrodynamics

P. Drake, D. Arnett, A. Frank, T. Plewa, T. Ditmire, A. Takabe, **B.** Remington

N. Fisch, C. Niemann, C. Joshi W. Mori, B. Afeyan, D. Montgomery, A. Schmitt, B. Kirkwood

NIF will be able to recreate the most extreme conditions of any planet

Some Key Issues:

- What is a solid at >10 Mbars
- How does H behave at 5,10,...g/cc
- What chemistry occurs at Mbar-Gbar conditions

The team of leading scientists in the field of ultra-dense matter continues to grow

Many of the techniques have been benchmarked on the Omega, Jupiter, and Vulcan laser facilities

	The National Ignition Facility
PRL 97, 025502 (2006) PHYSICAL REVIEW LETTERS week ending 14 JULY 2006	JOURNAL OF APPLIED PHYSICS 105, 036107 (2009)
Dissociation of Liquid Silica at High Pressures and Temperatures	Large elastic wave amplitude and attenuation in shocked pure aluminum Y. M. Gupta, ¹ J. M. Winey, ^{1,a)} P. B. Trivedi, ¹ B. M. LaLone, ¹ R. F. Smith, ² J. H. Eggert, ²
THE JOURNAL OF CHEMICAL PHYSICS 125, 014701 (2006)	and G. W. Collins ² PRL 102, 075503 (2009) PHYSICAL REVIEW LETTERS 20 FEBRUARY 2009
Laser-driven shock experiments on precompressed water: Implications for "icy" giant planets	Diamond at 800 GPa
RL 95, 075502 (2005) PHYSICAL REVIEW LETTERS week ending 12 AUGUST 200	D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins
Direct Observation of the α - ε Transition in Shock-Compressed Iron	PHYSICAL REVIEW B 79, 014112 (2009)
via Nanosecond X-Ray Diffraction	Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa
L 96, 255003 (2006) PHYSICAL REVIEW LETTERS week ends 30 JUNE 2	D. G. Hicks, ^{1,*} T. R. Boehly, ² P. M. Celliers, ¹ J. H. Eggert, ¹ S. J. Moon, ¹ D. D. Meyerhofer, ^{2,†} and G. W. Collins ¹ PHYSICAL REVIEW LETTERS
Broadband Dielectric Function of Nonequilibrium Warm Dense Gold	PRL 101, 065701 (2008) 8 AUGUST 2008
LETTERS	Ultrafast Dynamic Compression Technique to Study the Kinetics of Phase Transformations in Bismuth
	R.F. Smith, J.H. Eggert, M.D. Saculla, A.F. Jankowski, M. Bastea, D.G. Hicks, and G.W. Collins
Laser-shock compression of diamond and	PHYSICAL REVIEW LETTERS 28 MARCH 2008
evidence of a negative-slope melting curve	Hugoniot Data for Helium in the Ionization Regime
	J. Eggert, ¹ S. Brygoo, ^{1,2} P. Loubeyre, ² R. S. McWilliams, ^{1,3} P. M. Celliers, ¹ D. G. Hicks, ¹ T. R. Boehly ⁴ R. Jeanloz ³ and G. W. Collins ¹
PHYSICAL REVIEW LETTERS DESCRIPTION AND ADDRESS DESCRIPTION OF ADDRESS DESCRIPTION OF ADDRESS	 PHYSICAL REVIEW B 78, 174102 (2008) High-precision measurements of the diamond Hugoniot in and above the melt region D. G. Hicks,^{1,*} T. R. Boehly,² P. M. Celliers,¹ D. K. Bradley,¹ J. H. Eggert,¹ R. S. McWilliams,^{1,3} R. Jeanloz,³ and G. W. Collins¹
Strifter Weining Diriet Law Flydel Weining Antricken Flydel Weining Antricken Flydel Weining Statistic Weining	Achieving high-density states through shock-wave loading of precompressed samples Raymond Jeanloz***, Peter M. Celliers ⁵ , Gilbert W. Collins ⁵ , Jon H. Eggert ⁵ , Kanani K. M. Lee ¹ , R. Stewart McWilliams ⁴ Stéphanle Brygool, and Paul Loubeyre ¹

Eggert, Braun

Materials science/planetary interiors platform- ramp condition of Fe to super-earth conditions (~ 20 Mbar)

The National Ignition Facility

In addition to being able make solids at 10's of Mbar, we can now study these solids with diffraction, EXAFS, velocimetry, and broad band reflectance

Advanced diagnostics are being developed to explore the microscopic physics in this dense matter regime

Simultaneous diffraction and velocity measurements give compressibility and phase to 5 Mbar

Eggert, Rygg

This is by far the highest P diffraction ever collected and sets the stage for NIF experiments

We also developed EXAFS for Ultra-hi-P solids Determines Fe structure + coordination+T

Coupling diamond cells to laser shocks enables access to ultra-high density states for He, H2, He+H2

scale to 10+ TPa on NIF (Eggert PRL 08, Jeanloz PNAS 07, Lee JCP 06, Loubeyre JHP 06)

Coupling diamond cells to laser shocks enables access to ultra-high density states for He, H2, He+H2

The technique has been demonstrated on Omega to 200 GPa, and is expected to scale to 10+ TPa on NIF (Eggert PRL 08, Jeanloz PNAS 07, Lee JCP 06, Loubeyre JHP 06)

Currnet ultra-dense matter plans for NIF include 10's Mbar solids & 10's of Gbar dense plasmas **FY12 FY10 FY11** 30 Mbar Diffraction Carbon structure & T New regime of **EXAFS/diffract** 6 shots 4 shots ion at >100 Solid-state – 10 Mbar to 100's of Mbar **EXAFS** for 4 shots Fe-ramp to 20 local order 4 Mbar, 4 shots shots **Ultra-dense** D2 to 6 g/cc 4 shots Hydrogen H-D 100 H @ 50 Mbar Mbar many He/H2 (Pycnonucl Gbar 4 shots ear) **Kilovolt** Shock Fe to chem/Gigabar 1 Gbar Fe @ 10's Gbar press. 4 shots 4 shots 1-D compression Atomic scale data & H in Ignition hohlraums **Convergent experiments** new regime **VISAR/SOP**

t

- What physics limits optimizing burn?
- How does matter behave in DT burning environment, ie. Radiation and relativistic regimes?
- What are the next advanced ignition concepts?

NIF will open a new field of Burning Plasma physics, what are the key questions

- Understand/optimize the burning plasma
 - e-ion equilibration
 - Alpha deposition
 - EOS/opacities and non-equilibrium
 - Effects of extreme fields
 - Plasma effects on nuclear reactions

- New burning plasma physics?
 - Extreme neutron and photon flux
 - e+e- pairs
 - Photonuclear processes

Does a deep understanding of burning plasmas enable new ignition concepts?

Previous Photoionised plasmas achieved ξ=20ergcms⁻¹, NIF will achieve >1000ergcms⁻¹

Low mass X-ray binary ξ=30 ergcms⁻¹

Seyfert galaxy ξ=300 ergcms⁻¹

29

Laboratory Astro/Nuclear Physics

- Measure opacities relevant to stellar evolution
 - Can measure LTE and non-LTE conditions at high T and high or low rho
- Test codes modeling turbulence on NIF
 - Supernovea simulations suggest significant mix: NIF can benchmark these simulations
 - How were heavy elements dispersed in the Universe
- Test nuclear physics models
 - Benchmark excited state nuclear physics
 - Dense plasma effects on reaction rates
 - Test models for big bang nucleosynthesis
 - Helps to determine temperatures of stars

n produces excited state

NIF will reach near core conditions of the sun and measure $\kappa_{\text{Rosseland}}$ to ~10%

Solar Radiative Region: 200-1350 eV (Bahcall, Rev. Mod. Phys. 67, 781, 1995)

NIF 750 TW estimate from semi-emperical scaling: >700 eV (Dewald PRL 95, 215004(2005).)

Supernovae come in two general categories

Supernovae come in two general categories

[Hillebrandt, Sci. Am., 43 (Oct. 2006)]

Turbulence mixes core (blue) into the overlying He mantle (green) and H envelope (red). Some fraction of the core, carrying the synthesized heavy elements, gets ejected.

[Hillebrandt, Sci. Am., 43 (Oct. 2006)]

P. Drake et al. are developing designs to recreate a scaled supernova explosion on NIF

- Simulations show deep nonlinear mixing relevant to SN1987A
- Rho-t scaling described in Ryutov et al., Ap.J. 518, 821 (1999); Ap.J. Suppl. 127, 465 (2000); Phys. Plasmas 8, 1804 (2001)]
- fully developed turbulence will be experimentally studied at NIF

HED Plasma induced excited state population is believed to play a role in s-process nucleosynthesis

The National Ignition Facility

Dope ICF capsule with Tm, capture products from debris, measure ratio of 172/170 to determine s-process cross section enhancement factors

Extreme laser intensities

- R. Kirkwood, Physics of Plasmas 2007
- J. Ren, Nature Physics, 2007
- R. Kirkwood, Physics Rev. Lett., 1996
- Y. Ping Submitted PRL

Extreme laser intensities

We are just starting to develop science "platforms" to explore this new frontier of science

The National Ignition Facility

