Cryogenically Cooled Laser Amplifiers

J. Körner, J. Hein, H. Liebetrau, M. Kahle, R. Seifert, D. Kloepfel, M. C. Kaluza

Friedrich – Schiller University Jena

HEC-DPSSL, Lake Tahoe, Sept. 12th – Sept. 14th
Outline

Introduction:
- Why cryogenic cooling?
- Yb:CaF$_2$ @ cryogenic temperatures
- Burst mode?

Burst Mode Laser system:
- General layout
- Frontend
- Amplifiers

Conclusion
Why cryogenic cooling?

In case of Yb$^{3+}$ doped media cryogenic cooling yields (typically):

- Higher efficiency
- Higher gain

Why?
Lower laser levels are thermally depopulated!

Yb:CaF$_2$ @ 300K

- $n = 1.4$ + low n^2
- Lifetime 1.9ms
- Broad emission and absorption bands
- Good thermal conductivity
- Not birefringent
- Large size available

- Low emission cross sections
- High saturation fluence (74J/cm2)
- Strong reabsorption @ laser wavelength
Yb:CaF$_2$ @ 100K

- Higher σ_e @ 1030 nm
- Bandwidth nearly maintained but structured
- Absorption around 940 nm nearly unaffected
- Reabsorption @ 1030 nm negligible
- BUT: still not high gain material still moderate saturation fluence (approx. 40 J/cm2)

Further Improvement is achieved for mechanical properties in case of cryogenic cooling:
e.g. higher thermal conductivity (x4 for undoped material between 300 and 100 K!)
Cryogenic cooling improves the amplification properties, but there are still challenges to face for efficient operation:

1. Yb:CaF$_2$ is still rather a low gain material

2. The saturation fluence is still high compared to LIDT values for Pulses in the nanosecond range

Further Improvement is achieved for mechanical properties in case of cryogenic cooling:
- e.g. higher thermal conductivity (x4 for undoped material between 300 and 100 K!)
Cryogenic cooling improves the amplification properties, but there are still challenges to face for efficient operation:

1. Yb:CaF$_2$ is still rather a low gain material
2. The saturation fluence is still high compared to LIDT values for Pulses in the nanosecond range

Further Improvement is achieved for mechanical properties in case of cryogenic cooling:
- e.g. higher thermal conductivity (x4 for undoped material between 300 and 100 K!)

Advanced multipass imaging schemes

Other pulse modes
Burst mode

Amplification of multiple pulses within one amplification cycle

- Fluence for single pulse stays low → reduced LIDT issue
- Total extraction fluence of burst is high → efficient extraction

<table>
<thead>
<tr>
<th>burst parameters for our system</th>
</tr>
</thead>
<tbody>
<tr>
<td>reprise within burst τ_1</td>
</tr>
<tr>
<td>reprise of bursts τ_2</td>
</tr>
<tr>
<td>pulses per burst</td>
</tr>
<tr>
<td>burst length τ_3</td>
</tr>
<tr>
<td>length of single pulse</td>
</tr>
</tbody>
</table>

- Laser
- Pump

Jörg Körner
What is offered by bursts?

- **diode pumped high energy fs lasers**
 - gain saturation of broadband materials is typically well above LIDT in CPA Yb-doped systems
 - limited efficiency
 - rather low average power

- **diode pumped high power fs lasers**
 - very high average power, but rather low peak power
 - good efficiency

- **fs - burst mode amplifier**
 - LIDT for bursts is way higher even at lower stretching
 - good efficiency possible
 - medium average power
 - medium peak power
Applications

- Interaction with particle beams from accelerators
 - Matched pulse mode
 - Higher energy as CW pumped

- FHe bursts applications

- Other
 - Materials processing
 - Combustion diagnostics
 - Plasma diagnostics
 - ...

- Dose and energy sensitive experiments
 - X-ray source
 - Electron acceleration
 - HHG
 - Spectroscopy
Frontend amplitude satzuma + pulse compression

Stretcher

S0
50W CW diode pumped

S1 (cryogenic)
2.5 kW Diode pumped

Pulse Picker

S2 (cryogenic)
16kW Diode pumped

Experiment

Implementation in progress
Installed + running
under development

1MHz, 1W, 150fs

1MHz, 200ps

1MHz, 10W

1MHz, 1W, 150fs

x mJ bursts

mJ range, e.g. ns pulse

up to 200 mJ, 10Hz

achieved >300 mJ, 0.5Hz

up to 5J, 10Hz

Alternative Frontend

1MHz, 5W, 200ps

1MHz, 10W

1MHz, 10W
Burst laser system

- Frontend amplitude
 satzuma + pulse compression

- Stretcher
 1MHz, 1W, 150fs
 1MHz, 200ps

- S0
 50W CW diode pumped
 1MHz, 10W

- S1 (cryogenic)
 2.5 kW Diode pumped
 1MHz, 1W, 150fs
 up to 200 mJ, 10Hz
 achieved >300 mJ, 0.5Hz

- S2 (cryogenic)
 16kW Diode pumped
 up to 5J, 10Hz
 x mJ bursts

- Pulse Picker

- Experiment

- alternative Frontend
 mJ range, e.g ns pulse

- Implementation in progress
 Installed + running
 under development
Amplitude Satsuma generates 300 fs, 1 MHz, 1 W

- Stretched to ca. 50 ps

- BME Pockels-cell cuts out bursts of 500 pulses, 1Mhz

- Burst reprise 10 Hz
Burst laser system

<table>
<thead>
<tr>
<th></th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>10W, 0.1-1MHz</td>
<td>200mJ, 10Hz</td>
<td>up to 5J, 10Hz</td>
</tr>
<tr>
<td>pump</td>
<td>50W CW fiber coupled (105µm)</td>
<td>2.5 kW laser diode stack (ms pulses)</td>
<td>17 kW laser diode module (ms pulses, homogenized)</td>
</tr>
<tr>
<td>cooling</td>
<td>water</td>
<td>LN2</td>
<td>LN2</td>
</tr>
<tr>
<td>special</td>
<td>average power booster for fs</td>
<td>high gain multi pass</td>
<td>high energy +efficiency very compact</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>relay imaging</td>
</tr>
</tbody>
</table>
S0 – CW amplifier

Frontend
- amplitude
- satsuma + pulse compression

S0
- 50W CW diode pumped

Stretcher
- 1MHz, 200ps

S1 (cryogenic)
- 2.5 kW Diode pumped
- 1MHz, 1W, 150fs

S2 (cryogenic)
- 16kW Diode pumped
- up to 200 mJ, 10Hz
- up to 5J, 10Hz

Pulse Picker
- x mJ bursts

Compression
- 1MHz, 10W

Experiment

Alternative Frontend
- mj range, e.g. ns pulse

Implementation in progress
- Installed + running
- under development
- 4f imaging scheme, copropagating pump and extraction beam
- Heat splitted on two or more Yb:CaF$_2$ crystals in the image planes
- Pumped with 50W fiber coupled laser diode
S0 – CW amplifier
S0 – CW amplifier

Commissioning soon!
Frontend amplitude satsuma + pulse compression

1MHz, 1W, 150fs

S1 (cryogenic) 2.5 kW Diode pumped

mJ range, e.g. ns pulse

up to 200 mJ, 10Hz

S2 (cryogenic) 16kW Diode pumped

x mJ bursts

Pulse Picker

1MHz, 200ps

S0 50W CW diode pumped

1MHz, 200ps

1MHz, 10W

Compression

Experiment

1MHz, 1W, 150fs

Implementation in progress

Installed + running

under development
Amplifier S1 - setup

- Doublerelay imaging: two nested relay systems
- 24 passes @ 2mm beam diameter

2.5 kW
940 nm

2.5m
3m
Amplifier S1 - setup

Imaging setup for amplifier S1

pump setup

LN2 cryostat (modified Janis ST500UC), 3W @80K

Jörg Körner
Amplifier S1 - results

Input:
Burst of 500 pulses
150μJ total
1Mhz burst internal
Burst starts 1.5ms after pump

Amplifier:
24 passes
2.5 kW / 2 ms
Reprate 0.5 Hz
Gain up to 2000
Extraction efficiency of more than 10% @ cryogenic temperature!

Amplifier S1 - results
Amplifier S1 - results

- Gain narrowing low
- Good beam profile
Frontend amplitude amplification with satsuma and pulse compression.

Stretcher:
- 1 MHz, 1 W, 150 fs
- 1 MHz, 200 ps

S0 (50 W CW diode pumped)

S1 (cryogenic, 2.5 kW diode pumped):
- 1 MHz, 1 W, 150 fs
- 1 MHz, 200 ps
- mj range, e.g., ns pulse
- x mj bursts up to 200 mj, 10 Hz

S2 (cryogenic, 16 kW diode pumped):
- 1 MHz, 30 W
- x mj bursts up to 5 J, 10 Hz

Pulse Picker

Compression

Experiment

Implementation in progress
- Installed + running
- under development

Jörg Körner
Amplifier S2 - setup

- Again two nested relay systems
- 16 passes through the material
- Adaptive mirror can be applied
- Very compact, whole amplifier fits in vacuum tube
- 1 cm beam diameter
- Designed for up to 5J output
Amplifier S2 - setup

Commissioning soon!
We are constructing an all diode pumped burst mode laser system:

- Based on Yb:CaF$_2$
- Burst mode allows higher extraction fluencies and efficiency
- CPA system
- Designed for 5 J / burst + 10 Hz

Status:

Frontend: ready, producing bursts of **500 pulses, 1MHz, 300fs**

S0: CW – pumped preamp, on table, commissioning soon

S1: cryogenic cooled, achieved **gain > 2000, > 300 mJ** with good beam profile, **FWHM bandwidth about 4.5 nm**, ready

S2: cryogenic cooled, on table commissioning soon
Thank you for your attention!

Work supported by:

HZDR

HELMHOLTZ GEMEINSCHAFT

Helmholtz-Institut Jena
thermal model predicts about 40 K temperature shift starting from cryo-head
• crystal under high vacuum enviroment (10-7 mbar achieved)
Yb:CaF2 as laser medium for broadband amplification
- down to 100 fs possible
- very long lifetime (1.9 ms)
- good thermal conductivity
- especially @ cryogenic temperature

amplification of bursts (up to several 100 pulses)
- higher fluence extractable without damage
- higher efficiency possible

as vacuum enviroment is employed for cooling, we can also put the whole amplifier into vacuum:
- less problems with air disturbances
- focus planes dont need seperate vacuum tubes, window passes are spared