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ABSTRACT 

Hydrodynamically unstable plasma flows driven by intense laser radiation are described 

in which an interface between two materials of dissimilar densities is subjected to a very 

strong shock and then decelerated over a longer time scale. Pre-imposed perturbations on 

this interface are unstable to a combination of the Richtmyer-Meshkov (RM) and Rayleigh- 

Taylor (RT) instabilities. Overall target dimensions for these experiments are of the order 

of 1 mm, and length scales of the unstable perturbations of interest can be as small as a few 

microns. At such small spatial scales, the effects of dissipative processes such as viscosity, 

thermal conductivity, and mass diffusion begin to affect instability growth rates. 

In this paper, estimates are presented of the spatial scale at which viscosity and mass 

diffusion begin to affect the growth of a perturbation due to the RM and RT instabilities. 

Time dependent values for the plasma kinematic viscosity and interfacial binary mass 

diffusivity are estimated for the conditions occurring in laser-driven instability experiments 

recently conducted on the Omega laser. These are used together with several models in the 

literature for estimating the reduction in the growth rate dispersion curves of the Rayleigh- 

Taylor and Richtmyer-Meshkov instabilities due to the presence of these small-scale 

dissipative effects. 



I. INTRODUCTION 

Hydrodynamically unstable flows driven by intense laser radiation are described in 

which the interface between two materials of dissimilar densities is first subjected to a very 

strong shock and then decelerated over a longer time scale. Perturbations on this interface 

are unstable to a combination of the Richtmyer-Meshkov (RM) [ 1-21 and Rayleigh-Taylor 

(RT) [3-41 instabilities. These experiments serve as a testbed for the study of similar high 

Mach number, high Reynolds number instability-driven systems that occur on very different 

spatial scales. 

A large-scale application of this testbed arises in the astrophysical problem of core- 

collapse supernovae. In a supernova explosion, the He-H interface of the progenitor star 

undergoes a very similar acceleration history, with the interface being impulsively 

accelerated by a very strong shock and then subsequently decelerated by the surrounding 

lower density hydrogen envelope [5-91. In this case, length scales are vastly larger than 

those occurring in the laser-driven laboratory experiment. Care must be taken to insure that 

the same physics is governing the hydrodynamic evolution in these two cases. Specifically, 

we are concerned in this paper with the onset of dissipative effects, which occur at small 

spatial scale. Since the laboratory experiment scale is so small compared with the 

astrophysical application, we need to assess whether effects of viscosity, thermal 

conductivity, and mass diffusion change the character of the instability evolution from that 

which would occur in a system of much larger scale. 

A second application in which small-scale dissipative effects have been shown to be of 

importance occurs in the implosion of double-shell ICF ignition targets [lo-121. In this 

case, the specific acceleration history differs for each unstable interface within the target, but 

as shown in ref. [lo] both the RM and RT instabilities again play an important role. 

Perturbation length scales in this case arise from the surface roughness spectrum initially 

present on the various concentric shells within the target. As shown in ref. [lo], the short 
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wavelength portion of this spectrum is clearly affected by small-scale dissipative effects. 

The estimation of the spatial scale at which instability evolution departs from the classical 

behavior is therefore very important, as it sets the resolution required in numerical 

simulations to accurately predict the impact of mixing on the capsule performance. For 

NIF-scale ignition capsules, the Reynolds number is shown to be large (Re-105) and 

instability growth near the time of minimum volume is predicted to be approaching a 

turbulent state. The full numerical simulation of such a high Reynolds number flow 

including all scales of motion is beyond the present state of the art. Experimental 

verification using a similar instability-driven system occurring at a larger, more diagnosable 

scale would therefore be quite useful in verifying the predictions of numerical simulations. 

The small-scale processes that can affect the perturbation growth are due to the transport 

of momentum (viscosity), heat (thermal conductivity), and mass (diffusion). In this paper, 

we will focus only on two of these, viscosity and mass diffusion. The reason for this is 

two-fold. Whereas viscosity and mass diffusion provide a purely stabilizing force at short 

perturbation wavelengths, the effect of thermal conductivity is more complicated. As shown 

by Ryutov [13], the effect of thermal conductivity on the RT instability can be either 

stabilizing or destabilizing, depending on the molecular weight of the interface materials. 

A second reason for focusing on viscosity and diffusion is that these two mechanisms 

are not included in numerical simulations [5-121 of high energy density flows, whereas 

thermal conductivity is explicitly included in all of these simulations. As experiments and 

simulations move toward the study of shorter wavelength perturbations, these dissipative 

effects will introduce a source of error in the numerical simulations. The goal of this paper 

is to estimate the scale at which this occurs in both the Rayleigh-Taylor and Richtmyer- 

Meshkov instabilities. 

IL EXPERIMENTAL SETUP AND RESULTS 

A. Experimental Setup 



The experiments to be considered are conducted on the Omega Laser at the 

Laboratory for Laser Energetics (LLE), University of Rochester [ 14-16]. Figure l(a) 

shows a photograph of a typical target that is used in the experiments, The target consists 

of a cylindrical shock-tube package containing the interface of interest mounted together 

with a thin metal backlighter foil, which is used to generate x-rays for diagnosing the target. 

The target materials are mounted within a Beryllium shock tube with an outer diameter 

(OD) of 1100 pm and an inner diameter (ID) of 800 pm. The shock-tube is used to 

improve the planarity of the experiment by decreasing the lateral expansion of the target 

materials. Beryllium is used for the shock-tube material, since it is highly transparent to the 

diagnostic x-rays. The length of the shock tube is typically of order 2 mm long. 

Figure l(b) shows a two-dimensional slice through the center of the target. The 

target consists of a 150 pm thick polyimide layer (p = 1.41 g/cm3), with the remainder of 

the target filled with a low-density carbonized resorcinol formaldehyde (CRF) foam (p = 

0.1 g/cm3). Embedded within the polyimide layer is a radiographically opaque tracer strip 

of 4.3% brominated polystyrene (CH) as shown at the bottom of Figure l(b) in an end-on 

view of the target. This tracer layer measures 75 pm in the direction along the Be tube, and 

is 200 pm wide in the transverse or diagnostic line-of-sight direction. The density of the 

CH(Br) layer (p= 1.42 g/cm3) is nearly identical to that of the surrounding polyimide. 

When viewed in side-illuminated radiography, most of the contrast comes from this opaque 

tracer layer, allowing visualization of the interfacial structure over only the central 200 pm of 

the target. This helps to eliminate wall effects that are inherent in such an integrated line- 

of-sight diagnostic [ 171. 

The strong shock conditions of interest are achieved by directing 10 beams with a 

nominal measured energy of 500 J / beam at a laser wavelength of 0.35 1 pm onto the target. 

Each beam has a super-Gaussian spatial intensity profile defined as I / I,, = exp [-(r / 

412~m)l 4.7. The combined spatial profile of all drive beams also follows this profile, with I, 

= 9 x1014 W/cm2. The intensity is reasonably constant over a central diameter of 600 pm, 
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and falls off by about 10% by 800 pm. For all experiments, the temporal pulse is 

nominally flat with a temporal duration of 1 ns. 

B. Experimental Results 

The basic target geometry shown in Figure 1 has been used to study the evolution of 

a wide range of perturbations [9]. For all perturbation geometries considered, the 

underlying acceleration history of the interface is the same. The deposition of laser energy 

at t = 0 generates a strong shock wave, which passes through the interface at t = 3 ns 

impulsively accelerating it. The interface then gradually decelerates over the remainder of 

the experiment. The acceleration / deceleration history of the mean interface is shown in 

Figure 2(a). This acceleration history is obtained from a numerical simulation using a one- 

dimensional radiation-hydrodynamics code HYADES [ 181. More complete details of the 

simulations including time histories of the pressure, density, temperature, and degree of 

ionization are given in [ 191. 

The acceleration history shown in Figure 2(a) initiates instability growth of 

perturbations imposed on the interface due to a combination of both the Richtmyer- 

Meshkov and Rayleigh-Taylor instabilities. The amount of RM growth is significant early 

in time, but quickly becomes small in comparison to the subsequent RT growth as the 

interface is decelerated. Both instability mechanisms depend on the Atwood number of the 

interface, which is plotted in Figure 2(b). Even though the density on either side of the 

interface is monotonically decreasing following shock passage through the interface [ 191, 

the Atwood number remains relatively constant throughout the experiment at A = 0.55. 

In reference [19], this experiment geometry was used to study the growth of a pre- 

imposed perturbation consisting of a single sinusoidal component. In this paper, we will 

focus on perturbations of more complicated modal content, as the goal is to study the effect 

of dissipative effects on short wavelength perturbations. Figure 3 shows examples of 

experimental radiographs obtained at t = 13 ns, using three different initial interface 



perturbations. In all cases, the instability evolution was diagnosed with x-rays generated by 

directing an additional 7 Omega beams onto a 2.5 x 2.5 mm2 by 12 pm thick titanium 

backlighter foil located 4 mm from the center of the target as shown in Figure l(a). These 

beams, driven by a separate oscillator, were delayed in time relative to the drive beams. The 

contrast generated by differential absorption of the backlighter x-rays by the target materials 

is then imaged with a gated framing camera [20], producing the radiographs of Figure 3. 

Figure 3(a) shows the structure resulting from an initially imposed single sinusoidal 

component with wavelength h = 50 pm and initial amplitude a, = 2.5 pm. The perturbation 

is clearly seen due to the high opacity of the radiographic tracer layer (Br) embedded in the 

interface. The transmitted shock is seen as well due to the difference in optical depth of the 

shocked vs. the un-shocked foam. A reference grid consisting of 15 pm Au wires with a 

period of 63 pm was used to determine the mean interface location and the peak-to-valley 

amplitude of the interfacial perturbation. Figure 3(b) shows the structure arising from the 

same acceleration history, but with an initial perturbation consisting of two sinusoidal 

components withwavelengths,h, = 60 pm and h, = 40 pm and corresponding initial 

amplitudes of a, = 0.75 pm and = 0.5 pm, respectively. The resulting structure at t = 13 

ns is somewhat more complicated than that for the single mode perturbation. Figure 3(c) 

shows the corresponding interfacial structure arising from an initial perturbation with eight 

sinusoidal modes. The wavelengths are given by hi = (180 pm) / i = (180,90, 60,45, 36, 

30, 25.7, 22.5 pm). The corresponding amplitudes of each component were randomly 

generated to give a maximum perturbation amplitude of 2.5 pm, the same as for the other 

two perturbations shown in Figure 3. The interfacial structure shown in Figure 3(c) is 

considerably more complicated than that arising from the single or two-mode perturbations. 

In each case shown in Figure 3, the perturbation is visually seen to be non-linear, 

with a clearly asymmetric spike-bubble structure as well as vortical roll-up evident at the 

spike tips. In reference [ 191, it was shown that the single-mode perturbation enters the non- 

linear regime within the first few nanoseconds following shock passage through the 



interface. The onset of non-linearity in the perturbation development gives rise to additional 

modal components in the perturbation spectrum [2 1,221. Structure will arise at both longer 

and shorter wavenumbers given by k, - kj and ki + kj, respectively, where modes (i, j) are any 

of the pre-imposed modes of the initial perturbation. In the two-mode case, for example, 

addition perturbations will be generated with shorter wavelengths of 20, 24, and 30 pm and 

a longer wavelength of 120 pm. This longer wavelength component is clearly seen in 

Figure 2(b) as the spacing between the longer, non-bifurcated spikes. For the eight-mode 

case, the spectrum resulting from non-linear interaction is more extensive. Since we are 

interested here in the short wavelength behavior, Table 1 lists the modes resulting from the 

non-linear interaction of k, + kj. 

Table 1 

12.00 
12.86 

0.52 
0.49 

13.85 
15.00 
16.36 
18.00 
20.00 

In addition to the perturbations shown in Figure 3, the same experiment geometry 

has also been used to study the evolution of other initial perturbation spectra. In reference 

[23], for example, an extensive discussion is presented for the case of the interaction of two 

modal components with widely spaced initial wavelengths, h, = 50 pm and & = 5 pm. The 

corresponding initial amplitudes are a, = 2.5 pm and a, = 0.25 pm, respectively. The non- 

linear interaction of these modes produces the additional shorter wavelengths components 

given in Table 2. 

0.45 
0.42 
0.38 
0.35 
0.3 1 



Table 2 

1.38 

0.25 I 
In the following sections, the effect of viscosity and mass diffusion on the RM and 

RT growth of these perturbations subjected to the acceleration history of Figure 2 will be 

quantified. The goal is to obtain an estimate of the spatial scale at which these dissipative 

processes begin to significantly alter the evolution of the perturbation growth. 

III. ESTIMATION OF DISSIPATIVE TRANSPORT PARAMETERS 

A. Plasma kinematic viscosity 

In this Section, a brief discussion of the small-scale dissipative transport properties 

is given for the experiment of interest. A more complete discussion is found in [19]. The 

plasma kinematic viscosity is estimated by two methods. The simplest formula for the 

estimation of the viscosity of a plasma is that given by Braginskii [24], which is applicable 

to the low density, high temperature plasma state where ionic coupling is weak. The 

coupling is determined by the plasma parameter I? = Z2 e2 / ( k ,  TA,) , where (Z-e) is the 

ionic charge and Ai = (3/47~N,)l’~ is the average inter-ionic distance (Ni is the ion number 

density in I? is therefore a measure of the ratio of potential to kinetic energy of the 

plasma. 

For I? << 1, the plasma ions are weakly coupled, and the formula of Braginskii for 

the kinematic viscosity is given as 

f i  T5” 
vi = 3 . 3 ~ 1 0 - ~  

i n ( ~ ) z ~  p i 



Here, Y is the kinematic viscosity in cm2/s, T is the ion temperature measured in eV, p is the 

density in g/cm3, A and Z are the atomic weight and number, and ln(A) is the Coulomb 

logarithm, which is again a function of temperature and degree of ionization. For numerical 

evaluation of the kinematic viscosity, we use the Coulomb logarithm definition given in the 

NRL Plasma Formulary [25]. 

For dense plasma conditions or for conditions where mixing between two ionic 

species is involved, we also use the more extensive viscosity model of Clerouin et al. [26], 

which is applicable over a wider range of temperatures and densities than the Braginskii 

model. For this model, the kinematic viscosity is given by 

1.1 r-1.895 
eff 9 

< 

( l+dI  )2 (2) 
2 , 2<reff <i60 

a l l +  a1 
3 

Y (cm2/s) = 6.55 x 10-loZeff mi 112 ni 516 

where the parameter h and fits to the integrals I are given by 

43r 312 a =  3 3 r  
eff 

I ,  = (i8on 312  reff )-l  

2 -113 
I ,  = ( i / 6 o n  (0.49 -2.23 r 

eff 

3 1 2  
I ,  = (1 ion ) (2.41 r1 I9  

eff 

Here Z, = x,Z,+ x2Z2 is the number-density-weighted average charge for a binary ionic 

mixture of two species with number densities x, and x2. The effective plasma coupling 

parameter for this mixture is 

in  



e2 2113 2513  - 
eff 513 513 

Z5l3 = x l z ,  + x * z 2  
a k  T ’ L f f  = 

B 
(4) 

where a is the mean ionic radius, and k, is the Boltzmann constant. This model was 

developed by performing molecular dynamics simulations in the dense plasma regime and 

extrapolating the results to the dilute plasma regime (r&<<l). The resulting model gives 

results in good agreement with the model of Braginskii in the low-density regime where 

both are applicable, as shown in [19]. 

From the one-dimensional numerical simulation of the experiment [ 191, the plasma 

coupling parameter r was calculated. This is plotted in Figure 4(a). Two curves are shown, 

one based on the material properties of the high-density material on one side of the 

interface, and one based on the low-density material properties. After passage of the shock, 

the plasma parameter is seen to be in the “uncomfortable” range close to one, i.e. neither in 

the weakly couple regime where kinetic theory is valid (r<<l) nor the very strongly coupled 

regime (r>>l). 
The kinematic viscosity, calculated using both the Braginskii formula (dashed curves) as 

well as that of Clerouin et al. (solid curves), is plotted in Figure 4(b). Again the viscosity is 

plotted using the “pure” material properties on both sides of the interface. After passage 

of the shock, Y remains reasonably constant at approximately 0.1-0.2 cm2/s for the denser 

polyimide and 0.04-0.05 cm2/s for the carbon foam. In reality, there will be some degree of 

atomic scale mixing occurring at the interface. In this case, the Clerouin model can be used 

to quantify the value of the kinematic viscosity for mixtures of various proportions. This is 

shown in Figure 5 as a function of the fraction of the high-density CH(Br) material. Curves 

are shown for discrete times of 5, 10, 15, and 20 ns. Little difference is seen as a function 

of time, with a relatively low viscosity for the pure low-density material (CH(Br) fraction = 

0) and a value approximately 3-4 times higher for the pure high-density material (CH(Br) 

fraction = 1). All curves show a minimum at a CH(Br) fraction of 25-30%. 
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B. Plasma binary mass diffusivity 

An additional transport term that can strongly affect the flow development is the binary 

mass diffusivity. Mass diffusivity, as will be shown, affects the growth rate dispersion 

relation of perturbations on the unstable interface, eventually causing stability at sufficiently 

large wavenumber. For the range of plasma coupling conditions of interest (r-1), the 

method of Paquette et al. [27] can be used. In this method, the diffusion coefficients are 

obtained as high-accuracy analytic fits to numerically evaluated collision integrals for a 

screened Coulomb potential. By contrast with the method of Clerouin used for estimating 

plasma viscosity, the method of Paquette is rigorously valid in the dilute plasma regime and 

is extrapolated to the dense plasma regime. Again, by comparison with molecular dynamics 

simulations in the dense plasma regime, the method is shown to provide reasonable 

estimates in the intermediate region (r-1) of interest to the present experiments. 

Figure 6(a) shows a plot of the binary mass diffusivity D,,  at the interface as a function 

of time. After passage of the shock, D, ,  remains reasonably constant at approximately 0.08 

cm2/s. The numerical values are observed to be quite close to those of the kinematic 

viscosity, falling between the values of v on either side of the interface. The Schmidt 

number, Sc = vavg / D12,  quantifying this comparison between diffusion of momentum and 

mass is plotted in Figure 6(b). Since the kinematic viscosity varies with the mixture 

proportion as shown in Figure 5, the Schmidt number is plotted in Figure 6(b) based on the 

pure materials on either side of the interface as well as the average. Prior to shock arrival, 

the Schmidt number is very large as the materials are in the solid state. After the shock, 

however, Sc is observed to be of order one, which is characteristic of a wide range of gasses 

and plasmas. As Figure 6(b) shows, this experiment while being complicated somewhat by 

a non-constant acceleration and the effects of decompression does have the nice feature of 

providing reasonably constant transport properties characterized by v, D12, and Sc. 
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IV. GROWTH RATE DISPERSION RELATION OF RT AND RM INSTABILITY 

WITH VISCOSITY AND MASS DIFFUSION 

A. The effects of viscosity and mass diffusion on the RT dispersion relation 

Having estimated values of both the kinematic viscosity and the mass diffusivity, we can 

now quantitatively examine their effect on the Rayleigh-Taylor growth rate dispersion 

relation for this experiment. Even though, as noticed in Figure 3 and discussed in [19], the 

growth of the initially imposed perturbations quickly enters the non-linear regime, we will 

focus on quantifying the dispersion relation in the linear regime. This is reasonable, as the 

emphasis of this paper is on understanding the effect of viscosity and mass diffusion at 

smaller spatial scales than those originally imposed on the interface. Even though these 

short wavelength modes originate from a non-linear interaction between longer wavelength 

modes, their growth (once the driving modes have saturated [22]) will be well described by 

the linear theory. 

An analytical form of the RT dispersion relation including viscous and mass diffusion 

was given by Duff, Harlow, and Hirt (DHH) [28]. The growth rate r ( k , t )  is given by 

A + v2 k4 - (Y + DI2)k2  li = -jW(D,k,t) 

where q(D,k,t)  is the growth rate reduction factor for an interfacial perturbation of 

wavenumber k due to a temporally increasing diffusional layer thickness 6, = 2 4 F  of 

the interface. In DHH, this effect of a growing diffusional layer thickness is referred to as 

the dynamic diffusion effect, as opposed to the static effect represented by the last term in 

eqn. (9, which has no explicit time dependence. 

q(D,k,t)  is determined as the eigenvalue of the equation for the velocity perturbation 

w(z) at the interface (w and z are in the direction normal to the mean interface): 
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Equation 6 is solved using a shooting method for a generic density profile given by 

p = e$( z /S, ). Figure 7 shows a plot of (k, t )  for t = 3 ns (solid line), 8 ns (long dashed 

line), and 20 ns (short dashed line). The wavenumber range plotted corresponds to 

wavelengths from 0.5 - 100 pm, fully covering the range wavelengths considered in any of 

experiments as seen in Tables 1 and 2. 

The effect of a time-dependent diffusion at the interface is to produce a finite density 

gradient, which increases in time throughout the experiment. The reduction in the RT 

growth rate due solely to this density gradient scale length effect (i.e. ignoring for the time 

being the effects of viscosity and static mass diffusion) is shown in Figure 8(a) by plotting 

Q = J A  k g ( t ) / Y ( k , t )  as a function of time and wavenumber. These are shown relative to 

the classical growth rate = ,/m (dotted line), which is normalized to one at h = 0.5 

pm (k = 12.56 radlpm). The thickness of the diffusion layer 6, = 2,/= increases from 

0.31 to 0.5 to 0.8 pm as time increases from 3 to 8 to 20 ns. The effects of finite interface 

thickness should be felt when the perturbation wavelength is comparable to the layer 

thickness, i.e. when k S , ( t )  - 1. This corresponds to wavenumbers of 3.2, 2, and 1.25 

rad/pm, respectively. The normalized growth rates shown in Figure 8(a) show a clear 

departure from the classical value at each of these time-dependent values. The 

corresponding wavelengths at which k S,(t) - 1 are 2.0,3.1, and 5.0 pm, respectively. This 

spatial scale is smaller than any of the length scales arising due to non-linearity in the 

perturbation spectra shown in Figure 3. The eight-mode case produced the largest range of 

shorter wavelength components, but as seen in Table 1 these are all at least a factor of two 

larger than the diffusion layer thickness even at late time in the experiment. 

Note that for large k, the normalized growth rate approaches a constant value. This is 

consistent with other representations of the effect of a finite density gradient as given for 

example in [29, 301, where the reduced growth is expressed as = JA k g(t)/(l + k L,) , 
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where L,is a density gradient scale length. For k + 00, this expression becomes 

independent of the wavenumber, consistent with the large k behavior in Figure 8(a). 

The effect of viscosity and mass diffusion in eqn. (5) can now be evaluated. For the 

present experiment, the values of Y and DIz to be used in eqn. (5) are reasonably constant in 

time, but the driving acceleration g(t) as shown in Figure 2(a) varies considerably. Figure 

8(b) isolates the effect of viscosity and mass diffusion on the RT growth rate dispersion 

curves at t = 3,8,  and 20 ns. Note that Y is set to one in these plots, so there is no effect of 

a finite density gradient at the interface in Figure 8(b). These plots are again shown relative 

to the inviscid growth rate li = d m  (dotted line). Two curves are plotted at each time 

using the kinematic viscosity values on either side of the interface. The solid line in each 

case corresponds to the high-density side of the interface, and the dashed line gives the 

dispersion relation on the low-density side of the interface. As was noted in Figure 5, the 

minimum viscosity actually occurs at a mixture value in between these two extremes. For 

the present experiment, this minimum is not far from the low-density value, however. For 

any particular value of k, the growth rate difference due to the viscosity values on either side 

of the interface is small at early times when the interface acceleration is large. At later times 

and for large k, however, the fiist term in the square root of eqn. (5) becomes small in 

comparison with the viscous term, and the difference in viscosity on either side of the 

interface becomes more apparent. 

Figure 8(c) combines the effects of a finite density gradient and those of viscosity and 

mass diffusion by plotting the full RT dispersion relation of eqn. (5). The curves have the 

same form as those of Figure 8(b), but the combined effect gives a greater reduction fiom 

the classical value. A clear maximum growth rate corresponding to a most unstable 

wavelength is now seen at each time plotted. This maximum occurs at k ,  = 6, 3.4, and 2.3 

radpm fort = 3, 8, and 20 ns, respectively. It is interesting to compare these values with 

those obtained by including only the effect of viscosity and ignoring all effects of diffusion 



(both static and dynamic). For this case, Chandrasekhar [3 11 has given a simple expression 

for the most unstable wavenumber, k ,  = ’( A g I v  ’)”’ (eqn. 5 also reduces to this 

expression for D,, = 0). For t = 3,8 ,  and 20 ns, this expression gives maxima at k ,  = 34.9, 

20.1, and 14.6 rad/pm. In each case, the additional effects due to mass diffusion reduce the 

most unstable wavenumber by a factor of approximately 6. Thus the effects of mass 

diffusion are clearly non-negligible in this system when one is considering the evolution of 

short wavelength modes. 

It is also interesting to look at the limiting scale at which instability will occur. For t = 3, 

8, and 20 ns, eqn. (5) gives k = 21, 12, and 8 radpm as the wavenumbers at which the RT 

growth rate goes to zero. This corresponds to wavelengths from 0.3 to 0.78 pm. These 

cutoff values are smaller than any of the modes listed in Tables 1 or 2, so we may conclude 

that absolute stabilization will not occur in these experiments. If we focus on the low- 

wavenumber portion of the dispersion curves (k < 2 rad/pm) as shown in Figure 8(d), 

however, we see that there is a noticeable growth rate reduction for some of the modes 

considered in Tables 1 and 2. This reduction, plotted as a fraction of the classical value, is 

quantified in Tables 3 and 4 for each of these experiments. 

Table 3 



Table 4 

h (pm) k,, = k,+ kj (rad/pm) Ij@3ns 

2.5 2.5 1 0.87 
4.55 1.38 0.93 
5.56 1.13 0.94 
25 0.25 0.99 

rj@8ns Ij@20ns 

0.73 0.59 
0.84 0.74 
0.87 0.78 
0.97 0.94 

For the eight-mode experiment, only a rather modest reduction in growth rate is 

observed for any of the modes generated through the non-linear interaction of the initially 

imposed modes. Since the initial linear phase growth is exponential, however, this reduction 

is not negligible. The shortest wavelength mode of 11.25 pm, for example, will grow to 

only 88% of the inviscid amplitude by 3 ns. If the amplitude remained in the linear regime 

to 8 ns, the amplitude resulting in the presence of these dissipative effects would only be 

57% of the inviscid value. 

The growth reduction in the two-mode experiment of Table 4 is much more significant. 

By 3 ns, the shortest wavelength mode h = 2.5 pm will grow to an amplitude of 68% of the 

inviscid value. By 8 ns, the amplitude is only 11 %. This level of growth rate reduction will 

clearly affect the resulting evolution of the perturbation, and it has significant implications 

for the numerical simulation of the evolution of such short wavelength perturbations using 

inviscid numerical methods. 

B. The effects of viscosity and mass diffusion on the RM dispersion relation 

A similar effect is seen for the impulsively driven, Richtmyer-Meshkov phase of the 

perturbation evolution, which occurs following shock refraction through the interface. In 

this case, several models are available in the literature to separately account for the effects of 

a finite density gradient at the interface and the effect of viscosity. The effect of a finite 

interfacial density gradient was shown by Mikaelian [32] and Brouillette and Sturtevant [33] 

to affect the growth of an RM unstable perturbation in a very similar manner to that given 

by DHH for RT instability. Following [33], the reduced growth rate can be written as 
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where q(k,D,t) is the same growth rate reduction factor as in eqns (5 & 6). For the 

conditions of the present experiment, the initial velocity u, of the contact discontinuity at the 

interface following shock refraction is 8 x106 cdsec. The reduced growth rate of eqn. (7) 

is plotted in Figure 9(a) at t = 3, 8, and 20 ns using the values of V(k,D,t) from Figure 7. 

The growth rate is shown relative to the classical value for a discontinuous interfacial 

density profile with tp = 1 (dotted line), which is normalized to one at k = 12.56 radpm. 

The growth rate reduction due to a finite density gradient scale length is seen to be 

comparable to that for the RT phase of the instability shown in Figure 8(a). Again, the 

normalized growth rate approaches a constant at large wavenumber. 

The effect of viscosity on the RM instability has been considered by several 

researchers. In ref. [34], the effect of viscosity was expressed as 

‘Mihelian = k qo A u, exp[-2k2 Y, t] 

where a density-weighted average viscosity across the interface is used. In a more recent 

study, Carles and Popinet [35] present a different expression for the effect of viscosity on 

the RM instability derived from an asymptotic analysis of the full Navier-Stokes equations. 

Their expression is given to first order as 

4 

where a somewhat more complicated density-weighted kinematic viscosity is given by 

(9) 

The numerical factor of 16 is included so that the average viscosity reduces to the correct 

limiting values on either side of the interface. Figure 9(b) compares the growth rate 

reduction given by these two methods. The solid lines give the result of eqn. (9), and the 
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dashed lines give the reduction of eqn. (8). Again, the inviscid RM growth rate is given by 

the dotted line. The method of (9) shows a finite wavenumber cutoff due to viscosity, 

whereas the method of Mikaelian asymptotes to a zero growth rate as k --* 00. Both 

methods, however, give reasonably similar magnitudes for the growth rate reduction. 

The combined effect of viscosity, mass diffusion, and a finite density gradient scale 

length has not yet been explicitly discussed in the literature. By comparison with the DHH 

expression of eqn. (5) for RT instability, however, it seems reasonable to suggest a 

straightforward combination of the finite density gradient effect of eqn. (7) with the two 

viscosity models of eqns. (8 & 9). The modified model of Mikaelian thus becomes 

and the model of Carles and Popinet becomes 

The growth rate reduction given by these two modified models is shown in Figure 

9(c). As was the case with RT instability, there is now a peak in the growth rate dispersion 

curves with a corresponding wavenumber of maximum instability. For t = 3 ns, the peak 

growth rate occurs at k = 6.1 and 9.0 rad/pm (h = 1 .O and 0.7 pm) for the modified models 

of eqns. 11 and 12, respectively. At the later times plotted, the peak growth rate occurs at 

successively smaller wavenumbers. 

The wavenumber regime of greatest interest to the present experiments is shown in 

Figure 9(d) for 0 < k < 2. In this range, the two models of eqns. (1 1 & 12) are in excellent 

agreement. The RM growth rate reduction for the specific wavelength components of 

interest to the experiments is given in Tables 5 and 6. The reduction is slightly larger than 

the corresponding values for RT instability, but since the growth rate is initially linear for 

RM instability, the effect on the perturbation amplitude is not as great as that for RT 

instability. The shortest wavelength mode of the 8-mode experiment (1 1.25 pm), for 
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example, gave a reduced amplitude of 88% by 3 ns from the RT component, whereas for 

RM instability it is only reduced to 94% of the inviscid value. 

h (pm) 

2.5 
4.55 
5.56 
25 

Table 5 

&, = k,+ k j  (raapm) rj@3ns rj@8ns rj@20ns 

2.5 1 0.75 0.42 0.17 
1.38 0.86 0.66 0.42 
1.13 0.88 0.72 0.5 1 
0.25 0.96 0.92 0.87 

11.25 
12.00 
12.86 
13.85 

16.36 
18.00 
20.00 

Table 6 

V. DISCUSSION 

The combined effects of viscosity, mass diffusion, and a finite interfacial density 

gradient have been shown to begin to affect the growth of the RM and RT instabilities in the 

present experiments at wavelengths of the order of a few microns. Wavelengths 

considerably shorter than these will be strongly damped, and those considerably longer will 

behave nearly classically. This has several implications for the present experiments. 

First, as stated earlier, these experiments are being performed on the Omega laser to 

explore the related evolution of RM and RT instabilities in the very similar scaled 

acceleration history of a supernova. In [36], the Reynolds number characterizing instability 
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evolution in a supernova was estimated as Re-lo", implying a very large separation 

between the dominant unstable wavelength of interest and the scale on which viscous 

dissipation will occur. Using the characteristic values given in [36] of g - IO3 c d s 2 ,  h = 

10" cm, and Y = lo7 cm2/s, and assuming that D , ,  = Y, we can estimate from eqn. (5) the 

length scale at which RT growth will begin to depart from the classical value. For Y = 1, 

eqn. (5) gives a 50% reduction in the RT growth rate for a wavelength of orderlo' cm, 6 

orders of magnitude lower than the dominant length scale of interest. In the laser 

experiment by comparison, we have at most 2 orders of magnitude between the largest 

imposed perturbation length scale and that at which the RT growth rate is reduced by a 

factor of two. The analogy between the scaled experiment and the full-scale supernova will 

be preserved at the largest wavelengths, but not at smaller scales. In this regard, the 

increased energy offered by larger lasers such as the National Ignition Facility (NIF) and 

the Laser Mega Joule (LMJ) will allow for the use of larger targets and a corresponding 

increase in the range of scales unaffected by small-scale dissipation. 

The present analysis is also of importance in the numerical simulation of these 

experiments. Since radiation-hydrodynamics codes typically used to model these 

experiments or related ICF implosions considering short wavelength modes [5-121 do not 

include viscosity or diffusion, they will over-estimate the growth of short wavelength modes 

giving rise to possibly erroneous results. This is becoming increasingly more important as 

both experiments and corresponding numerical simulations evolve toward interfacial 

structure with increasingly more complicated modal content of decreasing spatial scale. 
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VIII. FIGURE CAPTIONS 

Figure 1. (a) Photograph of typical experimental target. (b) schematic of a two-dimensional 

slice through the center of the target. 

Figure 2. Time history of the (a) the unperturbed interface deceleration, and (b) the Atwood 

number. 

Figure 3. Radiograph of the interface at t = 13 ns for and interfacial perturbation with (a) 

single mode, (b) two-modes (c) eight-modes. 

Figure 4. Temporal history of (a) the plasma coupling parameter r, and (b) the kinematic 

viscosity for each of the pure materials on either side of the interface. 

Figure 5. Kinematic viscosity for a mixture vs. CHBr fraction 

Figure 6. Temporal history of (a) the binary mass diffusivity and (b) the Schmidt number at 

the interface. 

Figure 7. Growth rate reduction factor 'IC) for t = 3,8 ,  and 20 ns due to finite density gradient 

scale length at the interface. 

Figure 8. Rayleigh-Taylor growth rate dispersion curve for t = 3, 10, and 20 ns. (a) Effect 

of a finite density gradient scale length on RT growth rate. (b) Effect of viscosity and mass 

diffusion on RT growth rate. (c) Effect of viscosity, mass diffusion, and finite density 
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gradient scale length on RT growth rate. (d) Details of low wavenumber (0&<2 radpm) 

portion of dispersion curve. 

Figure 9. Richtmyer-Meshkov growth rate dispersion curve for t = 3, 8, and 20 ns. (a) 

Effect of a finite density gradient scale length on RM growth rate. (b) Effect of viscosity 

and mass diffusion on RM growth rate. (c) Effect of viscosity, mass diffusion, and finite 

density gradient scale length on RM growth rate. (d) Details of low wavenumber ( O d d  

radpm) portion of dispersion curve. 
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