

Orbital Angular Momentum

- Laguerre-Gaussian (LG) light contains Orbital Angular Momentum (OAM) and E- and B-fields not in Gaussian light
- Macro-scopic differences seen in OAM light (*extrinsic* AM) vs circular polarized light (*intrinsic* AM)
- Light primarily interacts with electrons in ultra-high intense laser plasma interactions as the ions are too heavy
- Experiments show a reduction in ion divergence angle in TNSA regime

Relativistic Induced Transparency

- Relativistic Induced Transparency (RIT) occurs when an opaque overdense plasma has the *effective* electron density drop by Lorentz factor, γ , as electrons become relativistic
- Transparency occurs when the *effective* electron density drops below critical density
- Recent experiments and simulations showed changes to polarization and ellipticity of linearly polarized light Their models suggest an anisotropy in the relativistic electron distribution driven by polarization direction

Experimental Setup at the Scarlet Laser Facility

- **Goal:** Measure the amount of transmission through ultrathin (<40 nm) liquid crystal (LC) targets using light with and without OAM
- Performed at Scarlet with 5J, 30 fs
- > OAM light generated by reflecting fully compressed pulse off a 16-step spiral phase mirror built to produce light with /=1
- Transmission measured from light scatter off spectralon sheet

No Target Transmission

26 nm Target Transmission

Relativistic Apodization Through Ultrathin Liquid Crystal Films Using Gaussian and Laguerre-Gaussian Light

N. Czapla¹, A. Zingale¹, G. Tiscareno¹, R. L. Daskalova¹, D. W. Schumacher¹ M. O. Cernaianu², P. Ghenuche², D. Doria², F. Negoita², D. R. R. Blackman³, A. Arefiev³, D. Stutman⁴ 1) Department of Physics, The Ohio State University 2) Extreme Light Infrastructure – Nuclear Physics 3) The University of California, San Diego 4) Johns Hopkins University

OAM 1 um

Gaussian 1 um

Primary Results

- Measured Relativistic Transmission as function of spatial profile and distance from focus with ultrathin targets
- transmission though peak intensity was 35% higher
- 2D spatial profile
- Developed novel wavefront measurement technique capable of measuring amount of OAM

Results

- Max OAM transmission = $\sim 45\%$
- Peak OAM intensity = 4.2×10^{20} W/cm²
- Max Gaussian transmission = ~35% Peak Gaussian intensity = 5.7×10^{20} W/cm²
- Saw *higher* transmission with OAM light even with *lower* peak intensity

Measured Transmission Mission Through 27-33 nm films

OAM Mode Quality and Measurements

Measured OAM using three different techniques: Cylindrical lens (quantitative), Sagnac interferometer (qualitative), Phase-Diversity Phase-Retrieval (PD-PR)

 $(I_{measured} = 1.07)$

Transmission with Gaussian profile 25% lower than LG Developed novel approach to calculate transmission using

Sagnac Interference

Phase-Diversity Phase-Retrieval

- phase discontinuity

image at 1 and 2 to E-field magnitude

5) Apply calculated phase to measured Efield at 1. Repeat until converged

19060105 and "Helical Beams" PN-III-P4-ID-PCCF-2016-0164.

• Many conventional wavefront sensors can't solve OAM

Estimated wavefront from multiple images separated in Z