D.B. Schaeffer^{1,2}, W. Fox^{3,1}, M. Rosenberg⁴, G. Fiksel⁵, J. Matteucci¹, H.-S. Park⁶, A.F. Bott¹, K.V. Lezhnin¹, A. Bhattacharjee^{1,2,3}, D. Kalantar⁶, B.A. Remington⁶, D. Uzdensky⁷, C.K. Li⁸, F.H. Seguin⁸, and S.X. Hu⁴

¹Princeton University; ²Princeton Center for Heliophysics; ³PPPL; ⁴LLE; ⁵University of Michigan; ⁶LLNL; ⁷University of Colorado; ⁸MIT Plasma Science & Fusion Center

Large-Scale, Low Dissipation Magnetic Reconnection on the NIF

NIF-JLF User Group Meeting

Feb. 7-9, 2022

cellent X-ray Images Obtained from Multiple Viewpoir Electron T, Measured by Comparing Filtered Signals summary and Discussio

Reconnection Observed Between t=2 and t=3 ns

Supported by the DOE FES & NNSA, NIF Discovery Science (experiments), and DOE INCITE (computation)

- Platform for magnetic reconnection experiments developed for the National Ignition Facility
 - Tiling of lasers drives reconnection through a highly extended quasi-1D current sheet
 - High quality reconstruction of magnetic fields throughout current sheet region
- Reconnection results:
 - Direct observation of current sheet in colliding HED plasmas (L/ δ ~ 100)
 - Current sheet width δ thins down to ${\rm \sim}\rho_{\rm e}$ scale
 - Decreasing magnetic flux with time indicates reconnection [Fox+ arXiv:2003.06351]

Magnetic Fields for Reconnection are Generated in Expanding Laser-Plasma by Biermann Battery Effect

- Observed in laser-plasmas driven by long-pulse lasers, fields of order ~50 T
- Believed to act as primordial seed fields of order $\sim 10^{\text{-}20}\,\text{G}$ in astrophysical plasmas
- Collision of two plumes drives magnetic reconnection between the opposing magnetic fields

NIF Used to Produce and Observe Reconnection in Highly-Extended Current Sheets

- $I_L \sim 10^{14} \text{ W/cm}^2$
- $T_e \sim 400\text{--}1000 \; eV$
- $S = Lv_A/\eta \sim 150-1500$

- Recent shots deployed smaller 440 um diameter DHe3 capsule for first time for higher spatial resolution
- Upcoming experiments will use higher I_L for higher S

Proton Radiography Used to Infer E and B Fields Present in the Plasma

Proton Image Sequence Between 2 – 6 ns

Excellent Proton Radiograph Obtained at t = 3 ns

Excellent Proton Radiograph Obtained at t = 3 ns

Highly Extended Current Sheet Observed with L/ δ ~ 100

• Laminar structure indicates instabilities not yet formed

Reconnection Observed Between t=2 and t=3 ns

PRINCETON

- 1D reconstruction of proton fluence at t=2 and t=3 ns
- Total magnetic flux $\Psi = \int dx \int B_y dz$ decreases from 3.5±0.2 to 2.1±0.1 T-mm²
 - Apparent in raw data as wider and deeper current sheet at t=2 ns
- Super-Alfvenic reconnection inflow speed
- Peak current of 160 MA/m

Plasma Self-Emission Measured with Gated X-ray Detector (GXD)

90-124

RGXD3F

1.25x

150 um

200 ps

5x

Magnification

Pinhole Size

Sweep speed

Relative Gain

1.75x

150 um

600 ps

176x

camera

- X-rays pass through filtered pinhole array ٠
- Pinhole images collected on streaked detector .
 - 4 independently timed strips embedded in MCP ٠
 - Signal integrated from 200-600 ps ٠
 - Images projected onto CCD (spaced to avoid overlap) ٠

Excellent X-ray Images Obtained from Multiple Viewpoints

View from DIM 90-124 (Side-On)

View from DIM 90-78 (Face-On)

X-ray Image Sequence Between 2 – 8 ns

Plasma Temperature Measured with X-ray Pinhole Imaging

- Compare Bremsstrahlung x-ray emission through two co-timed filters, e.g. 3 and 6 um Al
 - Ratio of the signal through the filters is related to the plasma T_{e}
- Measured T_e varies from ${\sim}700$ eV at 1.1 ns to ${\sim}400$ eV at 2-3 ns
- These temperatures and scale lengths were used to constrain PSC particle-in-cell simulations
- GXD images also indicate that:
 - plasma is reproducible
 - line-integration in side-on imaging (90-124 view) does not significantly affect measured temperature compared to face-on image (90-78 view)

[Schaeffer+ RSI 2021]

Summary and Discussion

- Platform for magnetic reconnection experiments developed for the National Ignition Facility
 - Tiling of lasers drives reconnection through a highly extended quasi-1D current sheet
 - High quality reconstruction of magnetic fields throughout current sheet region
- Reconnection results:
 - Direct observation of current sheet in colliding HED plasmas (L/ δ ~ 100)
 - Current sheet width δ thins down to ${}^{\sim}\!\rho_{e}$ scale
 - Decreasing magnetic flux with time indicates reconnection

[Fox+ arXiv:2003.06351]

- Upcoming shots are planned with:
 - higher laser intensity for higher Te and Lundquist number

Recon Team at NIF