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Experiment Measurement Steady State Time Dependent

Neon Cell2,3 Te = 26 ± 5 eV Te = 51 eV Te = 30.8 eV

SiO Foil1 Te = 33 ± 7 eV Te = 53 eV Te = 32.6 eV

• We report recent efforts to apply the new time-dependent capability of Cloudy6 to two 

photoionized plasma experiments performed at the Z machine at Sandia 

National Laboratory. 1,2,3

• We plot the results alongside a full radiation-hydrodynamic simulation performed with 

Helios-CR4

• Time-dependent models demonstrate a significant improvement over steady state



Motivation

• Our understanding of the universe is largely 
based on the spectroscopic interpretation of 
astronomical observations

• We need to test our interpretations in 
controlled laboratory experiments



Neon Gas Cell:
• Predominantly K-shell Ne ions

• Temperature measured via line ratio 

method2

• Te=26 ± 5 eV

SiO Tamped Foil:
• Predominantly L-shell Si ions

• Temperature measured via line ratio 

method2

• Te=33 ± 7 eV



Introduction:
• Our first efforts to benchmark 

astrophysical codes used a steady state 

physics model

• Significantly overestimates the 

measured Te

• Latest versions have reduced the error

• Steady state models do not fit the data



Method:

• The incident radiation was modeled with the view factor code VISRAD5

constrained by x-ray power, pinch size, & source brightness

• We propagate this radiation through the window material with HeliosCR to

get the drive for the Ne/SiO slab in our Cloudy model

• Time history of the radiation drive is handled with a multiplicative scale factor

• Cloudy does not allow changes to the spectral distribution between timesteps

• Smallest timesteps available are 1ns

• We have chosen the spectral distribution at the peak of the x-ray drive (t=100ns)

and scaled it to match the spectrally integrated intensity at each timestep
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