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Motivation: Why study iron at extreme conditions?

• Determining iron strength at extreme conditions is crucial 

to understanding Earth core rheology, geophysical 

observations, and the origin of the geodynamo.

• Iron is also one of the most important structural materials, 

making up the majority of steels, high entropy alloys, etc.

• Advance fundamental knowledge of the strength and 

constitutive behavior of iron at extreme pressure, 

temperature, and strain rate conditions.

Iron in geophysics Experimental design challenges
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Results: the first RT strength design for Earth core conditions Computational Details (Hydra and Ares codes)

• Structural α-ε phase transition unavoidable – occurs at 5% core pressure• Core pressures and temperatures 

range from ~136 – 364 GPa and 

~4,000 – 6,000 K

• Existing data on iron strength and 

constitutive behavior is limited and 

inconsistent.

• Resolution of discrepancies will help 

calibrate existing theories on Earth core 

formation and geodynamo processes.
Kelvinsong, The internal structure of Earth, 2014.

SUMMARY AND ACKNOWLEDGEMENTS

• Lack of clear experimental results on iron strength at Earth core conditions motivates these 

direct-drive shots which need extensive design as they have never been attempted before. 

• Growth factors of 3-10 are predicted based on the optimal target and pulse shape with 

minimal variation based on the EOS used. 
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Strength

• Steinberg-Guinan – thermally activated dislocation motion and work hardening
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• Preston-Tonks-Wallace – thermally activated dislocation motion and drag-controlled kinetics
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Target

• Be ablator – produce a plasma that rapidly expands causing 

a pressure wave to travel into the target

• BrCH heat shield – prevent unwanted heating in the iron due 

to x-rays

• Epoxy pusher – allows RT unstable ripples to grow

• Iron sample

• LiF tamper – pressure tamper
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Epoxy (20 μm) – LEOS 5030

Iron ripples (50 μm) – various EOS

Be (70 μm) – LEOS 40

LiF (500 μm) – LEOS 2240

12.5% BrCH (75 μm) – LEOS 5128
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Equation of State

• LEOS 260

• SESAME 2140

• LEOS 263
Multiphase models

Mesh – purely Lagrangian motion

Pulse Shape

• Uniquely long (60 ns) laser pulse is only available at the NIF

• The NIF has incredibly fine control, both spatial and temporal, 

over the laser drives it can produce. 

RT Growth

• Strength models developed for α-Fe do 

not extrapolate well into ε phase

• α-ε phase transition induces 

microstructural change

• Indirect-drive designs cannot produce a 

broad range of temperatures at pressure

Boundary Conditions

• Front: fixed

• Back: free

• Sides: reflecting
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• GF range will produce robust signal-to-

noise ratio in collected radiography data


