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Iron in geophysics Experimental design challenges

Motivation: Why study iron at extreme conditions?
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observations, and the origin of the geodynamo.

* EXisting data on iron strength and
constitutive behavior is limited and
Inconsistent.

* |Iron Is also one of the most important structural materials,

making up the majority of steels, high entropy alloys, etc. a-€ phase transition induces
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« Advance fundamental knowledge of the strength and
constitutive behavior of iron at extreme pressure,
temperature, and strain rate conditions.

—— Hugoniot

Indirect-drive designs cannot produce a | Mot line
broad range of temperatures at pressure

W - Rcsolution of discrepancies will help
Hydrosphere calibrate existing theories on Earth core
formation and geodynamo processes.
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Kelvinsong, The internal structure of Earth, 2014.
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« Steinberg-Guinan — thermally activated dislocation motion and work hardening
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* Uniquely long (60 ns) laser pulse is only available at the NIF S15-
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» Preston-Tonks-Wallace — thermally activated dislocation motion and drag-controlled kinetics * The NIF has incredibly fine control, both spatial and temporal, S 1-
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 Lack of clear experimental results on iron strength at Earth core conditions motivates these RT Growth Pl toe  Tooloswo
direct-drive shots which need extensive design as they have never been attempted before. . J 6 T e LEOS 263
. .f._% 12: a-PTW
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