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References Conclusions
• After three run cycles of fast neutron irradiation with fluences up to  2.41×1013 n/cm2 at LANSCE, the 265nm, 275nm, and 310 

AlGaN/GaN UV LED devices maintained their electrical performances.
• Ambient temperature effects are analyzed and shown greater impact to I-V curves than neutron irradiation over short term
• Shorter wavelength AlGaN UV LEDs at 265 and 275 nm exhibit smaller current & voltage than 310 nm devices. 
• Suggest using shorter wavelength AlGaN detectors and imagers for ICF applications
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FIG. 5. 275 nm LED device curve spread plot of I-V 
traces. Blow-up image displays initial (non-
irradiated) and the irradiated I-V curve scan.

265nm & 275nm LED I-V Curve Spread

FIG. 4. 265 nm LED device curve spread plot of I-V traces. 
Blow-up image displays initial (non-irradiated) and the 
irradiated I-V curve scan.

FIG. 7. Neutron fluence recorded over a 45 days 
period, total measured fluence:  25.1x1012 n/cm2 

FIG. 6. 310 nm LED device curve spread plot of I-V 
traces. Blow-up image displays initial (non-irradiated) 
and the irradiated I-V curve scan, spread noticeable.

310nm LED I-V Curve Spread 

Voltage and Current Variations vs. 
Wavelengths 

Voltage and Current Product 
Variations vs. Wavelengths

FIG. 11. Average absolute product variations of Δ𝐼𝐼* ΔV for various wavelengths at three operating
currents. At higher wavelengths, the neutron induced variations are evident.
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FIG. 1. Real time neutron irradiation 
measurements. (a) 265 nm LED family of I-V
curves taken during neutron irradiation. (b) 
Current variations due to neutrons. (c) Voltage 
variations during neutron irradiation .

Current/Voltage Induced Variations due 
to Neutron Fluence

FIG. 3. (a) 310 nm LED family of I-V curves taken 
during neutron irradiation. (b) Current variations 
due to neutrons. (c) Voltage variations due to 
neutrons. The 310 nm wavelength device display 
an abrupt voltage – current swing induced by 
neutrons.

FIG. 2. (a) 275 nm LED family of I-V curves 
taken during neutron irradiation. (b) Current 
variations due to neutrons. (c) Voltage 
variations due to neutrons. Neutron effects 
are identifiable for the 275 nm wavelength 
device.

TABLE I – The maximum and average values for the current Δ𝐼𝐼 and voltage ΔV variations for three different
wavelengths. The measurements are at three initial operating currents of 5 mA, 10 mA, and 15 mA.

Neutron Fluence Induced Variations on 
AlGaN Various Wavelengths

FIG. 9. Average absolute variations of Δ𝐼𝐼 for various
wavelengths at three operating currents. At higher
wavelengths, the neutron induced variations are
evident.

Data Analysis Algorithm for Calculations 
of Voltage & Current Variations

FIG. 8. Family of I-V curve scans taken during experimentation. The initial curve scan is presented as IV1 (blue
curve), the second measured curve scan is presented as IV2 (yellow curve), and IVK (red curve) is the k-th curve scan
measured during experimentation.

FIG. 10. Average absolute variations of ΔV for
various wavelengths at three operating currents. At
higher wavelengths, the neutron induced variations
are evident.
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