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Radiation hard diagnostics 1s critical to the success of Inertia Confined Fusion (ICF) and extended- space exploration. We have first demonstrated the exceptional proton radiation hardness of initial GaN 4 . 4 £ 10l : T 10t | i
dm_‘at_i(_)n space exploratiou. WY e_have first demonstra‘r?d _the e_xceptional proton radiation hardugss devices, and qualified their space flight and deployment such as Laser Interferometer Space Antenna (LISA) E 10 E 10 E 10 o | g ol | ‘:
of initial GaN devices. and qualified them for space missions in such as International Space Station and International Space Station (ISS) [1]. We have further conducted neutron radiation hardness experiments E E E 5 10 § S ' ! !
(ISS) .Laser Interfel‘omeFel‘ Space Antenna (LISA) and [1] We have further Cfmd“Cted neutron at Los Alamos Neutron Science Center (LANSCE) [2] by opening a new high fluence beam section. During S ar a Bt a ar © ] a7 ] 48 4.9 i
radlatlou hardness experiments at Los Alamos Neutron Science Center (LANSCE) [2] for ICF. In 2014-2016, we irradiated multiple GaN LEDs with a maximum fluence of 2.41x10!? neutrons/cm? over a 3- 5F o _ or :
2014, we opened new high fluence beam section at the Los Alamos Neutron Science Center year span, and generated 54161 current-voltage (I-V) curve scans traces. Our data processing program 52 53 i
(LANSCE) from 2014-2016 with a maximum fluence of 2.41x10" neutrons/cm® over a 3-year analyzes each and all I-¥ traces. In addition, we retrieved local temperature record to analyze and remove 0 : . . ' ' : 0 ' 0 , : : ) ' /‘
span. The current-voltage (I-V) curve scans for the 25 nradiated GaN LEDs generated 54161 traces temperature effects in the outdoor environment [3]. The -V curve families of AlIGaN UV LEDs with emitting 0 1 : E 4 5 6 0 1 2 3 4 3 0 1 e 3 4 5 6 /
in total, and 4.4 GB of data. Our data processing program analyzes each and all /-7 traces. wavelengths 265 nm, 275 nm, and 310 nm wavelengths were compared. The I-V curves of 265 nm AlGaN "-"ﬂ“ﬂgE ['\f] V:}Itage [‘ﬂ'] "."{:ul'lage [‘q.r'] . . . . 7 . . 0 : - — ' .
In addition to monitoring neutron fluence increase. we refrieved local temperature record to UV LEDs have least deviations from the average value, while the /-V curves for 310 nm AlGaN LED’s 00 1 2 3 4 5 6 0 1 2 3 4 S
analyze and remove temperature effects on the /-7 curves, because the devices were mounted in showed the largest deviations from the average value. We have reached another important recommendation b) 265 nm LED - Neutron Fluence Dependence of Al b) 275 nm LED - Neutron Fluence Dependence of Al b) 310 nm LED - Neutron Fluence Dependence of Al Voltage [V] Voltage [V]

for optimal use of multiple AlGaN optoelectronic devices, or imaging arrays for ICF diagnostics: Shorter
o ] _ o wavelength devices at 265 nm exhibit more consistent radiation hardness performances than the 310 nm 2 . : : : : : 9 : . : . : 9 :
The I-V curve families of AlGaN UV LEDs with emitting wavelengths 265 nm, 275 nm, 280 nm, devices. Our results reveal that higher aluminum content LEDs, or AlxGa1«N devices with higher x values for

and 310 nm wavelengths were compared. The IV curve family of 265 nm AlGaN UV LEDs has generating shorter wavelengths, have better radiation hardness, stimulating physical mechanism study. ‘ —+—— Al max = 513.50,A ‘ l —
least deviations from the average value, while the IV curve family for 310 nm AlGaN has the 1t 1t ] 1t 1

an open-bottom weather cover, and were subjected to ambient temperature variations [3].

FIG. 5. 275 nm LED device curve spread plot of I-V
traces. Blow-up image displays initial (non-

FIG. 4. 265 nm LED device curve spread plot of I-V traces.
Blow-up image displays initial (non-irradiated) and the
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largest deviations from the average value. Specifically, the voltage variations for 265 nm and 310 I INTRODUCTION 2.41x10" neutrons/cm? over a 3-year span, and generated - - — ) _ ) . . .
nm devices at 15 mA current are 0.08V and 0.28V, respectively [4]. ) 54161 current-voltage (I-V) curve scans traces. Our data E ‘W'H. s “--1,.&#“ oA E E 1 irradiated |-V curve scan. irradiated) and the irradiated I-V curve scan.
We have reached another optimization for AlGaN optoelectronics platform under development, or Fusion reactions power the Sun and the Earth. Edrc(;c_:zssing proiriam g‘lialy;l‘efe cach E all I;tht:ace;i In - d - - D“%; ."t i T el '*H. d ] - ﬂﬂi* ;i !" T :": '.1 1 ' l
imaging arrays for nuclear diagnostics: Shorter wavelength devices at 265 nm have more Controlled fusion will be the most potent clean energy fizon, we retnieved foca’ femperaturc record 1o analyze 4 <] ’ "' "u i*ji" ¥ -F <] % "I' 'i 'J" ﬂ 14 ! .!‘;: rﬁﬂ? !}d
| 4 114 1

stent radiation hardness perk than the 310 am devi and remove temperature effects in the outdoor environment At l 1 1t
consistent radiation har .ness per o%mances 1an the 310 nm devices. | o [3], which turned out to be larger than radiation effects. .
Our results reveal that higher aluminum content LEDs. or AlxGai1xN devices with higher x values

for shorter wavelengths. have better radiation hardness, and spur further physical mechanism

source for generations. Neutrons carries fusion energy but
also damage the diagnostic instruments. Radiation hard
semiconductor and optoelectronics devices are critical for

study. We are modeling AlGaN material physics and device design for more further optimizations.

successful and reliable neutron-generating experiments and
operations, such as Initially Confined Fusion (ICF) [4], Z
[5], ITER [6], and small modular nuclear reactors [7].

In this paper, we present neutron radiation hardness of
AlGaN UV LEDs at various wavelengths, based on the
further detailed data analysis of our neutron irradiation
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FIG. 1. Real time neutron irradiation FIG. 2. (a) 275 nm LED family of /-V curves FIG. 3. (a) 310 nm LED family of /-V curves taken ge [V]
: taken during neutron irradiation. (b) Current during neutron irradiation. (b) Current variations
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Il. AIGaN BANDGAPS AND ALUNMINUM CONTENTS E, E E \ /
AlGaN has strong ionic-covalent bond strength and E‘IO Eﬂ) g 10
wide bandgap. Aluminum content x in Al«Ga1-<N compound 5 5l E 5
impacts the bandgap size of AlGaN material, the emitting o O 5 o 5 ( \
and absorption wavelengths [9-11]. Specifically, the 0 X ) J . ‘ L . , / \
bandgap can be approximated as [9]: 0 2 3 4 5 6 0 0 : 2 3 4 5 6 - -
Voltage and Current Variations vs
| |
Eg(x) = f(x) — bx(1 —x) (1) b) 265 nm LED - Neutron Fluence Dependence of Al b) 275 nm LED - Neutron Fluence Dependence of Al b) 310 nm LED - Neutron Fluence Dependence of Al N t n F I n I n d d v t n n ]
where b is the bowing parameter, and f(x)=(1-— 2 y : : - - - ’ 2 eu ro ue Ce uce arla IO S o Wavelengths
x)E;(0) + xE;(1) is the linear compositional dependence i | +— Al max =513.50;.A] |  Almax=73191A [ —— Al max = 1359,061,;‘]

of the bandgap in the absence of bowing. £, (0) = 3.413 eV
for GaN and E;(1) = 6.413 eV for AIN at temperature
295K. While the bowing parameter b is determined device
structure and growth process, these equations indicate that Ak ]
higher Al contents yield larger bandgaps, thus shorter -
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wavelengths. Larger bandgap size is typically indicative of S8 08 Sen 15 S22 Seu 20 04 06 Ot 13 O 20 | - TABLE 1. Magnitude variations for the current Al and 900 ———— — 40 ———— —
higher bond strength, and better radiation hardness. More Time Month-Dat 2 ' : ' - S_E 08 Sep 15 Sep 22 Sep 29 OA 06 Ocl 13 Odl 20
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new outdoor irradiation section ~10 meters away from the 0 1 E (1 g cunalbiihe < ' { 265 310.06 138.32 13.90 6.34 g., c 20 1
neutron source at the 4FP60R had to be created. The gg e . . -22 S . %0 IOG 5 : e -20 30 -30 © 400 . g
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ranges from 265 nm up to 310 nm were selected. A partial d) LANSCE 60R (High Fluence Section) P09 Sep 16 sep,lf:" 59;130 tﬁ%g: Oct 14 Oct 21 Time [Month-Date] '5' 3
weather cover protected devices from rain and snow, Neutron Fluence ime [Mon ] 310 668.98 297.54 55.50 23.74 E = 10 - ]
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monitor and record Flatﬂ; CDntmliiﬂug[!g, a reliable al}tﬂmr?ted S g 16.5°C +/- 1.5°C. (b) Measured current variations (AI) at an initial bias +/- 1.5°C. (b) Measured current variations (AI) at an initial bias current 100 1 1 <
measurement was 1mplemented. e computer intertace TR current of 10 mA due to neutron irradiation. (¢) Measured voltage of 10 mA due to neutron irradiation. (¢) Measured voltage variations
was operated by our LabVIEW program. In a record three- E NE' 20 variations (AV) for a set current of 1{_} mA due to neutron irradiation. (AV) for a set current of 10 mA d_ue to neutron irradiation. The 10 mA 275 73 1 '91 342‘39 16'60 7‘76 0 | ! ! ! A ! ! ! ! ! 0 1 I 1 I I 1 I 1 I I
year continuous beam cycle, we collected 54161 curve E = The measured current and voltage variations of the 275 nm wavelength measured current and voltage variations of the 310 nm wavelength
. i > % AlGaN/GaN LED sample demonstrates a wider -V curve spread for AlGaN/GaN LED sample demonstrates a wider I-V curve spread for 3 10 1369 10 641 3?' 69 5 30 54 265 270 275 280 285 290 295 300 305 310 265 270 275 280 285 290 295 300 305 310
scans [2]. More details are referred to references [1, 2]. z a period of ~45 days. a period of ~45 days. . . . . W | th ) W | th )
To determine the neutron effects induced on the 350 08 Sep 15 Sep22 Sep29 Oct06 Oct 13 Ot 20 : eable ; for 275 am device AT = 73191 aveleng [nm] aveieng [nm]
AlGaN/GaN devices, we first remove the temperature Time [Month-Date] gi.:ltlc;ab © 1n§r§r11;]ent ?11- . E;H_ T;;; 06 - Fi : 3 I'I;A 265 751.70 416.46 19.40 10.83
effects from the collected data. To remove the effects, we s . By visual inspection of the family of I-V curve scans ig. 2 (b), an nm evice s uA Fig. 3 (b).
. FIG. 1. I-V curves during irradiation, current and voltage variations . ) X Based on these findines the radiation hardness of the
bring all the measured /- curve scans to a common versus LANSCE 60R (high fluence section) neutron fluence. (a) Figure 1 (a), neutrFln induced Eﬂbcts_ are hardly noticeable AlGaN/GaN devices | g'de X clength (1) < 265 15 mA 275 1124.80 623.77 20.30 11.10 o . o
temperature within variation of +/—1.5°C. [3]. 265nm LED - Family of irradiated I-V curves at set temperature of and any spread with respect to the initial scan cannot be - UN devices 1s evident on wavelcn " nm, FIG. 9. Average absolute variations of Al for various FIG. 10. Average absolute variations of AV for
, o 16.5°C +/- 1.5°C. (b) Measured current variations (AI) at an initial bias identify. When analyzing the current Al variations, we unlike devices with wavelength (1) > 265 nm Fig. 3 (c). ] : ] .
Experimental observations in the last year (2016) of the current of 10 mA due to neutron irradiation. (c) Measured voltage 1~ =" : dtobe Al = 513.50 uA With 310 1874.80 84951 | 81.80 | 35.63 wavelengths at three operating currents. At higher various wavelengths at three operating currents. At
neutron irradiation are shown in Fig. 1-3. Firstly, as shown variations (AV) for a set current of 10 mA due to neutron irradiation. identify the maximum spread to be - : HA. Wi h h 1 th th ¢ . d d . t
12Ner wavelengins, C ncutron mauccda variations

wavelengths, the neutron induced variations are
evident.

this measurement is evident that the variations are minimal
with respect to the initial reference scan, does reaffirming
neutron hardness.

(d) Neutron dose accumulated over time up to 25x10' n-cm™, for a

by I-V scan curves overlay in subfigures (a), devices of all ; .
period of ~45 days during beam cycle 2016.

wavelengths maintained operations. However, the I-V curve
overlays Fig.1(a), Fig. 2(a), and Fig. 3(a) for AlGaN LEDs
of wavelengths 265, 275, and 310 nm shows incrementally
wider spread.

TABLE I — The maximum and average values for the current Al and voltage AV variations for three different are evident.

wavelengths. The measurements are at three initial operating currents of 5 mA, 10 mA, and 15 mA.

Data Analysis Algorithm for Calculations

Similarly, we analyze the current Al variations for 275
nm and 310 nm LED devices. The variations have a *

We are conducting further research on the physical

IV. DATA ANALYSIS . S o )
mechanism of GaN radiation hardness, and optimize device
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constant temperature for the selected LED. the current Al and voltage AV variations for three different 4 748 475 4752 476 4 762

wavelengths. The measurements are at three initial
operating currents of 5mAd, 10 mA4, and 15 mA. These
current and voltage changes were induced by ~2.5x1013
n/em?. For all situation, it is observed that minimum
variations occur for 265 nm UV-LEDs devices, which
possess a higher aluminum content. Unlike 275 nm and 310
nm UV-LEDs devices that have less aluminum, have shown
higher current Al and voltages AV variations.

4754 \J, 4756 [ A7

Voltage [V]

FIG. 8. Family of I-V curve scans taken during experimentation. The initial curve scan 1s presented as IV, (blue
curve), the second measured curve scan is presented as IV, (yellow curve), and [V (red curve) is the k-th curve scan
measured during experimentation.

265 270 275 280 285 290 295 300 305 310
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We have experimentally demonstrated exceptional
radiation hardness of AlGaN optoelectronics devices for
ICF applications. In this work, we have further
demonstrated that shorter wavelength AlGaN UV LED at
265 and 275 nm have better performance consistency after
high fluence fast neutron irradiation. This can be an
important recommendation for optimal ICF diagnostics.

FIG. 11. Average absolute product variations of AI* AV for various wavelengths at three operating
currents. At higher wavelengths, the neutron induced variations are evident.
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