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The NIF proton radiography platform is ready 

• All components of the NIF proton radiography platform are ready:

• A bright (1010 protons), compact (35-80 μm diam), monoenergetic
(4% ΔE/E), isotropic source of 15 MeV and 3 MeV protons

• PRAD diagnostic with 9×9 cm detector area at 39 cm from TCC
• First demonstration coming up in mid-February

summary 
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3 Monoenergetic proton radiography 

Proton source 

Proton detector 
Subject plasma 

3 and 15 MeV protons 
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4 Monoenergetic proton radiography 

Phenomena investigated with monoenergetic 
proton radiography at OMEGA include: 

• Laser-foil interactions
• Magnetic reconnection
• Magnetic flux compression
• RT instability
• Weibel instability
• ICF capsule implosions
• ICF hohlraums
• Charged-particle stopping

Proton source 

Proton detector 
Subject plasma 

3 and 15 MeV protons 

Fast-ignition capsule Laser-foil plasma bubble ICF hohlraum 

LLNL-PRES-683262.



5 Monoenergetic proton source has been demonstrated* 

Setup: 38 kJ, 6-quad direct drive of 
D3He-filled, SiO2 exploding pusher. 

Main Results: 
• Proton yield = 9.2×109

• <Ep> = 14.981 ± 0.036 MeV
• Erms < 0.06 MeV (consistent with no energy

variation along different lines of sight) 
• Source size = 79 ± 19 μm FWHM diam

*J. R. Rygg et al, Rev. Sci. Instrum. 86, 116104 (2015).

ΔE/E ~ 4% 

LLNL-PRES-683262.



6 A smaller capsule trades off yield for resolution 

Shot number N151214-001 N151214-002 
Capsule diameter 

Gas fill 

440 µm 

18 atm D3He 

860 µm 

18 atm D3He 
N quads 
Elaser

8 
46.8 kJ 

8 
47.3 kJ 

15 MeV proton yield 2.4×109 1.3×1010 
  3 MeV proton yield 2.4×109 3.4×1010 
Source size 47 μm 75 μm 

Using a “half-size” capsule reduces the 15 MeV yield by 5x, and the source size by ~1.5x 

LLNL-PRES-683262.



7 New PRAD diagnostic for proton radiography 

CR39 (2 layers) 

BAS-MS IP 

Zr 
Al 

PRAD: exploded view 

• Mountable on DIM(0,0) and DIM(90,78)

• Compatible with WRFs and pTOF (but not mptof)

• Minimum detector standoff: 39 cm from TCC

• Active area is 9×9 cm square

◦ 2 layers of CR-39 (protons)

◦ 1 layer of BAS-MS IP (xrays)

LLNL-PRES-683262.



8 Precision measurements of stopping power in WDM will 
use a variant of the proton radiography platform 

• All components of the NIF proton radiography platform are ready:

• A bright (1010 protons), compact (35-80 μm diam), monoenergetic
(4% ΔE/E), isotropic source of 15 MeV and 3 MeV protons

• PRAD diagnostic with 9×9 cm detector area at 39 cm from TCC
• First demonstration coming up in mid-February

• Precise (~1%) measurement of charged-particle stopping power in warm
dense matter will be demonstrated with a variant of the platform

• 15 MeV D3He protons will be launched through a thick (175 mg/cm2)
slab of shock-compressed matter (Γe = 0.6, θ = 0.03)

• ~6±0.05 MeV downshift will be measured with WRF spectrometers
• A dedicated VISAR shot has characterized the sample ρ-T state to high

precision, and demonstrated uniformity better than 6%

summary 
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9 We will measure source spectrum, cold matter and 
warm-dense matter downshifts on a single shot 

Cold ΔE Warm ΔE 

8 mm 

source E0

DIM(0,0) 

DIM(90,78) 

175 mg/cm2 slab (500 μm HDC) 

D3He backlighter 

15 MeV protons 

Protons arrive at same time as shock breaks out the back 
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10 Stopping power models differ by much more than the 
anticipated measurement uncertainty 

measured 
N151214-2 
spectrum  

Stopping method <E> 
(MeV) 

<E> – Esrim
(MeV) 

description 

SRIM 8.80 SRIM cold graphite stopping [300 K, 2.2 g/cc] 

ICRU 8.89 0.09 ICRU cold amorphous carbon stopping [300 K, 2.2 g/cc] 

Zimmerman 8.86 0.06 Zimmerman’s parametrization 

AA-LDA 9.07 0.27 AA calc, with integration over density of linear response formula 

AA-Bethe 9.41 0.62 Kohn-Sham AA calc plugged into Bethe limit 

<E> measurement 
uncertainty = ±50 keV 

cold models plasma models 

15 MeV protons through 175 mg/cm2 carbon (8.5 g/cc, 4 eV or 2.2 g/cc, 300 K) 
LLNL-PRES-683262.



11 ΔE/Δx measurement can be made with ~1% uncertainty 

parameter nominal value and 
expected uncertainty 

dE/dx 
uncertainty 

(%) 

comments 

ΔE 6.00 ± 0.05 MeV 0.8% Energy downshift (50 keV WRF uncertainty) 

  ΔEAu 0.14 ± 0.02 MeV 0.3% Au layer adjustment to downshift 

  ΔEabl 0.07 ± 0.03 MeV 0.4% Ablated mass adjustment to downshift 

ΔρL 175 ± 0.5 mg/cm2 Initial HDC areal density (= ρ0Δx) 

  Δx 500 ± 0.2 μm 0.04% Initial HDC slab thickness 

  ρ0 3.50 ± 0.01 g/cc 0.3% Initial HDC density 

ΔE/ΔρL 33.1 ± 0.3 MeV cm2/g 1.0% Mean stopping power through slab 

Mean stopping power of 15 MeV protons going through the compressed HDC slab 

(Notional values only: first measurement will be made in two weeks!) 

LLNL-PRES-683262.



12 But… 

What is the state of the material? 

LLNL-PRES-683262.



13 A dedicated VISAR shot has characterized the slab state 

N151214-3 VISAR 

transit through HDC sample 

HDC sample 

VISAR mirror 

VISAR(90,315) 

VISAR shield cone 

Qtz window 

Laser Drive 

<vshock> = 24.4±0.2  km/s 
vshock rms deviation = 4% 

Transverse shock speed uniformity = 1.5% 24.4 km/s HDC shock Hugoniot state: 
  P = 10.5 Mbar 
  ρ = 7.0 g/cc (ρ/ρ0 = 2.0) 
  T = 0.9 eV 
  Γ = 0.63 (coupling parameter) 
  θ = 0.03 (degeneracy parameter) 

LLNL-PRES-683262.



14 Ok, so why start with shocked HDC? 

• The shock Hugoniot is a reproducible, well-characterized locus of material states
• Hugoniot passes through WDM regime
• Wealth of experimental data along the Hugoniot
• dE/dx measurement interpretation can be revised by future Hugoniot

measurements

• HDC:
• Is transparent (can track the shock through the sample with VISAR)
• Has high shock velocity (shorter pulse is needed to launch steady shock

through the whole sample)

LLNL-PRES-683262.



15 dEdx measurement at NIF is degenerate, strongly coupled 

Previous stopping power experiments 
NIF shot #1: HDC shocked to ~11 Mbar 

NIF #1 

ICF HS 

ICF DF 
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Frenje15 

Hayes15 

Hayes15 

NIF offers a more-precise measurement of a better-
characterized plasma than any previous experiment LLNL-PRES-683262.



16 The NIF proton radiography platform is ready, and will be 
used to precisely measure stopping power in WDM  

• All components of the NIF proton radiography platform are ready:

• A bright (1010 protons), compact (35-80 μm diam), monoenergetic
(4% ΔE/E), isotropic source of 15 MeV and 3 MeV protons

• PRAD diagnostic with 9×9 cm detector area at 39 cm from TCC
• First demonstration coming up in mid-February

• Precise (~1%) measurement of charged-particle stopping power in warm
dense matter will be demonstrated with a variant of the platform

• 15 MeV D3He protons will be launched through a thick (175 mg/cm2)
slab of shock-compressed matter (Γe = 0.8, θ = 0.05) 

• ~6±0.05 MeV downshift will be measured with WRF spectrometers
• A dedicated VISAR shot has characterized the sample ρ-T state to high

precision, and demonstrated uniformity better than 6%

summary 
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18 Preshot simulations predict uniform WDM state 

Time of 
proton 
arrival 

absorbed laser power 

shock velocity 

In sample at time of proton arrival (18.7 ns): 
  14.7 Mbar (2% variance) 

 7.8 g/cc   (1.4% variance) 
    2.5 eV      (12% variance) 
  Γe = 0.48, θ = 0.13 

*Fe EOS used for Au calculation LLNL-PRES-683262.



19 Preshot expected longitudinal uniformity: 
1.4% in density, 12% in temperature  

• VISAR will measure shock velocity through entire transit with ~0.25% precision
• Constrains average P, ρ, T Hugoniot conditions to better than 1%

• Reverberations will relax to the same P-up value as the final steady shock
• Stopping is dominated by uniform shocked sample

• Ablated mass and Au layer are 2.9, 2.6% of initial total mass, respectively

Sample state: 
  14.7 Mbar (2% variance) 

 7.8 g/cc   (1.4% variance) 
    2.5 eV      (12% variance) 
  Γe = 0.48, θ = 0.13 

This variation has small effect on the stopping 
power compared to 1% measurement uncertainty 

LLNL-PRES-683262.



20 Transverse variations are expected to be <5% 

• 8 upper inner quads (32 beams) are split and tiled over 2 mm

• Tiling gives expected 10% illumination uniformity over entire 2 mm area
• Illumination uniformity <5% over proton spectrometer (WRF) FOV

• Uniformity of illumination will be measured with GXD

• Transverse uniformity of shock will be measured with VISAR

WRF1 FOV 

WRF2 FOV 

VISAR FOV 

Simulated image 

LLNL-PRES-683262.



21 Timing uncertainty affects <1% of sample mass 

• Timing uncertainty will be of order 100 ps
• Shock breakout and proton bang time measured with VISAR and pTOF

• Thick (500 μm) sample reduces fractional importance of this timing uncertainty

Nominal timing 200 ps early: 
shock has not compressed 
last 5.6 μm of sample (1%) 

200 ps late: 
Last ~1% has started to 
release 

LLNL-PRES-683262.



22 Electromagnetic fields should not be a problem 

• E fields decay rapidly (τ ~ 100 ps) after laser turns off
• Proton arrival 300 ps after laser turns off

• B fields located predominantly around perimeter, have no effect on energy

• We will measure strength and topology of fields in situ in a dedicated experiment
to confirm they will not be an issue for dE/dx

LLNL-PRES-683262.



23 Scattering and straggling effects have been evaluated with 
TRIM and are relatively small for these conditions 

HDC only 
HDC[25]Au[3]HDC[422] 

Exit angle Lateral Straggle 

Energy Straggle 

σth ~ 240-300keV 

LLNL-PRES-683262.
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