Precision measurements of stopping power at the NIF

Collaborators
A. Zylstra (LANL)
C. K. Li (MIT)
G. Collins (LLNL)
P. Grabowski (UCI)
F. Graziani (LLNL)
S. Hansen (LANL)
B. Lahmann (MIT)
S. LePape (LLNL)
R. Petrasso (MIT)
J. Pino (LLNL)
F. Séguin (MIT)
H. Sio (MIT)

Cold Models
C at 2.2 g/cc, 300 K

Plasma Models
C at 8.5 g/cc, 4 eV

<\frac{dE}{dx}> [MeV cm^2/g]

15 MeV p through 175 mg/cm^2 of C

Measurement uncertainty

J. Ryan Rygg
Lawrence Livermore National Laboratory

NIF/JLF User group meeting, Livermore
Feb 1-3, 2016
LLNL-PRES-683262.
The NIF proton radiography platform is ready

- All components of the NIF proton radiography platform are ready:
 - A bright \(10^{10}\) protons, compact (35-80 \(\mu\)m diam), monoenergetic (4% \(\Delta E/E\)), isotropic source of 15 MeV and 3 MeV protons
 - PRAD diagnostic with 9×9 cm detector area at 39 cm from TCC
 - First demonstration coming up in mid-February
Monoenergetic proton radiography

Proton source → 3 and 15 MeV protons → Subject plasma → Proton detector
Phenomena investigated with monoenergetic proton radiography at OMEGA include:

- Laser-foil interactions
- Magnetic reconnection
- Magnetic flux compression
- RT instability
- Weibel instability
- ICF capsule implosions
- ICF hohlraums
- Charged-particle stopping

Proton source

Subject plasma

Proton detector

3 and 15 MeV protons

Fast-ignition capsule

Laser-foil plasma bubble

ICF hohlraum

LLNL-PRES-683262.
Monoenergetic proton source has been demonstrated*

Setup: 38 kJ, 6-quad direct drive of D^3He-filled, SiO$_2$ exploding pusher.

Main Results:
- Proton yield = 9.2×10^9
- $<E_p> = 14.981 \pm 0.036$ MeV
- $E_{rms} < 0.06$ MeV (consistent with no energy variation along different lines of sight)
- Source size = $79 \pm 19 \mu$m FWHM diam

A smaller capsule trades off yield for resolution

<table>
<thead>
<tr>
<th>Shot number</th>
<th>N151214-001</th>
<th>N151214-002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsule diameter</td>
<td>440 µm</td>
<td>860 µm</td>
</tr>
<tr>
<td>Gas fill</td>
<td>18 atm D³He</td>
<td>18 atm D³He</td>
</tr>
<tr>
<td>N quads</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>E_{laser}</td>
<td>46.8 kJ</td>
<td>47.3 kJ</td>
</tr>
<tr>
<td>15 MeV proton yield</td>
<td>2.4×10⁹</td>
<td>1.3×10¹⁰</td>
</tr>
<tr>
<td>3 MeV proton yield</td>
<td>2.4×10⁹</td>
<td>3.4×10¹⁰</td>
</tr>
<tr>
<td>Source size</td>
<td>47 µm</td>
<td>75 µm</td>
</tr>
</tbody>
</table>

Using a “half-size” capsule reduces the 15 MeV yield by 5x, and the source size by ~1.5x
New PRAD diagnostic for proton radiography

- Mountable on DIM(0,0) and DIM(90,78)
- Compatible with WRFs and pTOF (but not mptof)
- Minimum detector standoff: 39 cm from TCC
- Active area is 9×9 cm square
 - 2 layers of CR-39 (protons)
 - 1 layer of BAS-MS IP (xrays)
Precision measurements of stopping power in WDM will use a variant of the proton radiography platform

- All components of the NIF proton radiography platform are ready:
 - A bright (10^{10} protons), compact (35-80 μm diam), monoenergetic (4% $\Delta E/E$), isotropic source of 15 MeV and 3 MeV protons
 - PRAD diagnostic with 9×9 cm detector area at 39 cm from TCC
 - First demonstration coming up in mid-February

- Precise (~1%) measurement of charged-particle stopping power in warm dense matter will be demonstrated with a variant of the platform
 - 15 MeV D^3He protons will be launched through a thick (175 mg/cm2) slab of shock-compressed matter ($\Gamma_e = 0.6$, $\theta = 0.03$)
 - $\sim6\pm0.05$ MeV downshift will be measured with WRF spectrometers
 - A dedicated VISAR shot has characterized the sample ρ-T state to high precision, and demonstrated uniformity better than 6%
We will measure source spectrum, cold matter and warm-dense matter downshifts on a single shot.

Cold ΔE \hspace{2cm} DIM(0,0) \hspace{2cm} Warm ΔE

175 mg/cm² slab (500 μm HDC)

Protons arrive at same time as shock breaks out the back

8 mm

15 MeV protons

D³He backlighter

source E_0

LLNL-PRES-683262.
Stopping power models differ by much more than the anticipated measurement uncertainty.

<table>
<thead>
<tr>
<th>Stopping method</th>
<th>$<E>$ (MeV)</th>
<th>$<E> - E_{\text{SRIM}}$ (MeV)</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRIM</td>
<td>8.80</td>
<td></td>
<td>SRIM cold graphite stopping [300 K, 2.2 g/cc]</td>
</tr>
<tr>
<td>ICRU</td>
<td>8.89</td>
<td>0.09</td>
<td>ICRU cold amorphous carbon stopping [300 K, 2.2 g/cc]</td>
</tr>
<tr>
<td>Zimmerman</td>
<td>8.86</td>
<td>0.06</td>
<td>Zimmerman’s parametrization</td>
</tr>
<tr>
<td>AA-LDA</td>
<td>9.07</td>
<td>0.27</td>
<td>AA calc, with integration over density of linear response formula</td>
</tr>
<tr>
<td>AA-Bethe</td>
<td>9.41</td>
<td>0.62</td>
<td>Kohn-Sham AA calc plugged into Bethe limit</td>
</tr>
</tbody>
</table>

15 MeV protons through 175 mg/cm² carbon (8.5 g/cc, 4 eV or 2.2 g/cc, 300 K)
ΔE/Δx measurement can be made with ~1% uncertainty

Mean stopping power of 15 MeV protons going through the compressed HDC slab

<table>
<thead>
<tr>
<th>parameter</th>
<th>nominal value and expected uncertainty</th>
<th>dE/dx uncertainty (%)</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE</td>
<td>6.00 ± 0.05 MeV</td>
<td>0.8%</td>
<td>Energy downshift (50 keV WRF uncertainty)</td>
</tr>
<tr>
<td>ΔE_{Au}</td>
<td>0.14 ± 0.02 MeV</td>
<td>0.3%</td>
<td>Au layer adjustment to downshift</td>
</tr>
<tr>
<td>ΔE_{abl}</td>
<td>0.07 ± 0.03 MeV</td>
<td>0.4%</td>
<td>Ablated mass adjustment to downshift</td>
</tr>
<tr>
<td>ΔρL</td>
<td>175 ± 0.5 mg/cm²</td>
<td></td>
<td>Initial HDC areal density (= ρ₀Δx)</td>
</tr>
<tr>
<td>Δx</td>
<td>500 ± 0.2 μm</td>
<td>0.04%</td>
<td>Initial HDC slab thickness</td>
</tr>
<tr>
<td>ρ₀</td>
<td>3.50 ± 0.01 g/cc</td>
<td>0.3%</td>
<td>Initial HDC density</td>
</tr>
<tr>
<td>ΔE/ΔρL</td>
<td>33.1 ± 0.3 MeV cm²/g</td>
<td>1.0%</td>
<td>Mean stopping power through slab</td>
</tr>
</tbody>
</table>

(Notional values only: first measurement will be made in two weeks!)
But...

What is the state of the material?
A dedicated VISAR shot has characterized the slab state

24.4 km/s HDC shock Hugoniot state:
- $P = 10.5$ Mbar
- $\rho = 7.0$ g/cc ($\rho/\rho_0 = 2.0$)
- $T = 0.9$ eV
- $\Gamma = 0.63$ (coupling parameter)
- $\theta = 0.03$ (degeneracy parameter)

Transverse shock speed uniformity = 1.5%
Ok, so why start with shocked HDC?

- The shock Hugoniot is a reproducible, well-characterized locus of material states
 - Hugoniot passes through WDM regime
 - Wealth of experimental data along the Hugoniot
 - dE/dx measurement interpretation can be revised by future Hugoniot measurements

- HDC:
 - Is transparent (can track the shock through the sample with VISAR)
 - Has high shock velocity (shorter pulse is needed to launch steady shock through the whole sample)
dEdx measurement at NIF is degenerate, strongly coupled

Previous stopping power experiments
NIF shot #1: HDC shocked to ~11 Mbar

NIF offers a more-precise measurement of a better-characterized plasma than any previous experiment
The NIF proton radiography platform is ready, and will be used to precisely measure stopping power in WDM

- All components of the NIF proton radiography platform are ready:
 - A bright (10^{10} protons), compact (35-80 μm diam), monoenergetic (4% $\Delta E/E$), isotropic source of 15 MeV and 3 MeV protons
 - PRAD diagnostic with 9×9 cm detector area at 39 cm from TCC
 - First demonstration coming up in mid-February

- Precise (~1%) measurement of charged-particle stopping power in warm dense matter will be demonstrated with a variant of the platform

 - 15 MeV D^3He protons will be launched through a thick (175 mg/cm2) slab of shock-compressed matter ($\Gamma_e = 0.8$, $\theta = 0.05$)
 - ~6±0.05 MeV downshift will be measured with WRF spectrometers
 - A dedicated VISAR shot has characterized the sample ρ-T state to high precision, and demonstrated uniformity better than 6%
Backup slides
Preshot simulations predict uniform WDM state

In sample at time of proton arrival (18.7 ns):
- 14.7 Mbar (2% variance)
- 7.8 g/cc (1.4% variance)
- 2.5 eV (12% variance)

\[\Gamma_e = 0.48, \theta = 0.13 \]

*Fe EOS used for Au calculation
Preshot expected longitudinal uniformity: 1.4% in density, 12% in temperature

- VISAR will measure shock velocity through entire transit with ~0.25% precision
 - Constrains average P, ρ, T Hugoniot conditions to better than 1%
- Reverberations will relax to the same P-u_p value as the final steady shock
- Stopping is dominated by uniform shocked sample
 - Ablated mass and Au layer are 2.9, 2.6% of initial total mass, respectively

Sample state:
- 14.7 Mbar (2% variance)
- 7.8 g/cc (1.4% variance)
- 2.5 eV (12% variance)
- Γ_e = 0.48, θ = 0.13

This variation has small effect on the stopping power compared to 1% measurement uncertainty
Transverse variations are expected to be <5%

- 8 upper inner quads (32 beams) are split and tiled over 2 mm
- Tiling gives expected 10% illumination uniformity over entire 2 mm area
 - Illumination uniformity <5% over proton spectrometer (WRF) FOV
- Uniformity of illumination will be measured with GXD
- Transverse uniformity of shock will be measured with VISAR
Timing uncertainty affects <1% of sample mass

- Timing uncertainty will be of order 100 ps
 - Shock breakout and proton bang time measured with VISAR and pTOF

- Thick (500 μm) sample reduces fractional importance of this timing uncertainty

200 ps early:
 shock has not compressed last 5.6 μm of sample (1%)

Nominal timing

200 ps late:
 Last ~1% has started to release

LLNL-PRES-683262.
Electromagnetic fields should not be a problem

- E fields decay rapidly ($\tau \sim 100$ ps) after laser turns off
 - Proton arrival 300 ps after laser turns off
- B fields located predominantly around perimeter, have no effect on energy
- We will measure strength and topology of fields in situ in a dedicated experiment to confirm they will not be an issue for dE/dx
Scattering and straggling effects have been evaluated with TRIM and are relatively small for these conditions.