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Evolution of the campaign/ Importance of pulse shaping

0.6 N150917 — — requested — measured (453 kJ) Copper ablator, All 4 steps 1 steady shock
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Discovery Science, lron EQOS, 2013-2015

Using ramp-wave compression EOS technique that successfully
compressed diamond to 50 Mbar, compress and measure the stress
density of iron to over 10 Mbar.

We used a single shock to overdrive the a-€ transition in iron with a
single steady shock (~0.7 Mbar)

We took four shots:
 N130102-8.5 Mbar, Diamond ablator, all four steps had 2 additional shocks.
 N150607-7.9 Mbar, Copper ablator, thickest 3 steps had an additional
shock.
 N150701-9.8 Mbar, Copper ablator, all 4 steps had good ramps.
 N150917-14.8 Mbar, Copper ablator, all 4 steps had good ramps.
This shot had issues with VISAR timing and is still being analyzed.

Review of technique
Data
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Iron Is a cosmo-chemically abundant element that plays a major
role in terrestrial planetary interiors.
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Iron density dominates a terrestrial planet’s mass-radius relationship.
A planet’s metallic core is fundamental to understanding heat flow, interior

dynamics, and magnetic field generation. UL-
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The extreme interior pressures of large extrasolar planets are
accessible with few experimental techniques

Pressure-Temperature Phase Map of Fe
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J-P Davis (2003)

= Equilibrium thermodynamic behavior is described by an
eguation-of-state (EOS) surface
_ Ramped compression waves probes EOS at
Shocks probe high Temperature low temperatures close to the isentrope
EOS states o 4
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Ramp and shock
compressions follow different
paths on Equilibrium EOS
surface
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= Ramp compression access different regimes compared
to shocks

Ramped compression waves probes EOS at
_ low temperatures close to the isentrope
Shocks probe high Temperature

EOS states
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Velocity measurements are used to determine the
material ‘isentrope’
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Velocity measurements are used to determine the
material ‘isentrope’

Acoustic Perturbations travel
along characteristics
(Up is constant along each line)
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Analysis technique is complicated since the measurements are
not In situ particle velocities but instead free surface velocities
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We leveraged programmatic work on ramp compression
of copper to iImprove this discovery science campaign
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@Ve have studied the kinetics of the Fe a-& phase transformation using
ramp compression at Omega and the Z-machine.
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@Ve have studied the kinetics of the Fe a-g€ phase transformation using

ramp compression at Omega and the Z-machine.
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The NIF is well suited for ramp compression EOS experiments

Large uniform drive
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We are able to identify and correct regions responsible

for growing shocks.
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Pulse-shape correction works extremely well.
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Experimental design requires radiation-hydrocode

simulations
1.) Design Pulse shape 2.) Hohlraum Simulation 3.) Determine Source
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Iron physics package are side mounted on a hohlraum
with cone to prevent VISAR blanking
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Accurate target metrology is required for precise EOS

measurements
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LLNL and GA delivered high-quality
stepped targets which directly affected
the success of these experiments
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This discovery science campaign greatly benefited from
collaboration with other programmatic campaigns
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“ Using the alternate ablator, we ramp compressed iron to
10 Mbar
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Evolution of the campaign/ Importance of pulse shaping
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LASNEX simulations indicate that pressures of ~30 Mbar
could be obtained for future work
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Conclusions

We have measured the stress density and
sound speed of iron up to 10 Mbar, pressures
that exist within the cores of super-earths
around 5 earth masses.

We succeeded In ramp compressing Iron to
over 15 Mbar, but are still analyzing the data.

We have designs and believe we can reach 30
Mbar in ramp compressed Iron.
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