Extending the Digital Microfluidics Process to Form Emulsions Using Low-Surface-Energy Fluids

B. P. Chock, T. B. Jones, and D. R. Harding
University of Rochester
Laboratory for Laser Energetics

22nd Target Fabrication Meeting
Las Vegas, NV
12–16 March 2017
Summary

The process of forming and assembling individual fluid droplets into emulsions using electric fields has been demonstrated.

- The electrical requirements and electrode designs for forming droplets of the right size for making OMEGA and National Ignition Facility (NIF)-size targets and combining them to form emulsions were determined.
 - Water-in-oil and oil-in-water + surfactant emulsions were both formed and transported.
- Demonstrated how to overcome liquid pinning and capillary forces to move droplets (including low-surface-tension fluids) from a narrowly spaced parallel-plate electrode design to a wider separation for dielectrophoresis (DEP) centering.
- Future work will be to add a polystyrene monomer and photoinitiator to the oil phase to make a polystyrene shell.
Electric-field–based microfluidics can be used to form, transport, and center oil-water emulsions

- Each step is programmable
- Can work with a wide range of droplet sizes (0.01 to 12 \(\mu\)L) (OMEGA and NIF shells)
Transforming the double emulsion into a spherical concentric shell using an electric field limits the liquids that can be used.

- $\kappa_2 > \kappa_1$ is needed for the DEP force to center the inner droplet (to minimize the total energy)

- Polystyrene shells
 - Water – fluorobenzene – hexylene or decane
 $(\kappa = 78)$ $(\kappa = 4.8)$ $(\kappa = 2.0)$ $(\kappa = 2.2)$
 - DEP force for a 1-μm offset is 0.24 nN
 (OMEGA shell)

- Resorcinol-formaldehyde (RF) shells
 - Mineral oil – water – silicone oil
 $(\kappa = 2.2)$ $(\kappa = 78)$ $(\kappa = 2.6)$
 - DEP force for a 1-μm offset is 32.5 nN
An OMEGA-size water-in-oil emulsion was formed and transported.

- To make polystyrene shells
 - Forming a water-in-oil emulsion (sped up to 4× faster)
 - Transporting the emulsion (sped up to 3× faster)

Decane
- \(424 \, V_{\text{rms}}\)
- 100 Hz
- (0.18 \(\mu\)L)

Water
- \(88 \, V_{\text{rms}}\)
- 100 Hz
- (5 \(\mu\)L)

Water-in-oil emulsion
- (0.360 and 0.025 \(\mu\)L)

2 mm
- (30-\(\mu\)m spacing)
Forming *oil-in-water* emulsions requires a surfactant to be added to the water phase, which complicates the droplet dispensing process.

- To make RF shells

Water
100 V_{rms}, 100 Hz
(real time)

Silwet L-77/water (1× CMC)
75 V_{rms}, 10 kHz
(spéd up to 3× faster)

$12 \text{ mm} \ - 6 \text{ mm}$

Top view

Side view of electrode used to form the droplet

CMC = critical micelle concentration
Heating the membrane generates a thermocapillary pressure wave that ruptures the surfactant-loaded membrane to form the droplet.

Without heating, the membrane of a 1× CMC solution takes ~3 min to rupture at 100 \(V_{\text{rms}} \).
The membrane ruptures in a manner that is representative of the Rayleigh–Plateau instability

- 5× CMC
- 270-μm spacing
- 6.5 W

When heat is applied
- A wave-like instability pattern develops along the length of the membrane at \(t < 0.17 \) s
- Amplitude of the oscillations grows with time
- The membrane ruptures simultaneously along its length, forming individual droplets
NIF-size oil-in-water emulsions containing a surfactant were formed and transported.

Forming the oil-in-water emulsion (sped up to 6× faster)

Transporting the emulsion (sped up to 9× faster)

Mineral oil (610 V_{rms}, 100 Hz)

Water + surfactant (5× CMC) (75 V_{rms}, 10 kHz)

Oil-in-water emulsion (0.71 and 0.66 μL)
Changing the shape of the electrodes and the sequencing of the voltage allows low-surface-energy emulsions to be more-easily transported.

- Rectangular electrodes (10 × 2.5 × 0.18 mm)
 - 6.6-μL mineral oil and 5× CMC water emulsion
 - 75 V_{rms} 10 kHz

(Sped up to 4× faster)
Current work is to move the “pancake”-shaped emulsion to a wider-spaced electrode to form the spherical target

- A three-dimensional profile allows gravity to supplement the electric forces to overcome pinning at acute interfaces and capillary forces.

5× CMC-water 10-μL droplet
45° tilt angle, 75 V_{rms}, 10 kHz

(Sped up to 4× faster)
The process of forming and assembling individual fluid droplets into emulsions using electric fields has been demonstrated:

- The electrical requirements and electrode designs for forming droplets of the right size for making OMEGA and National Ignition Facility (NIF)-size targets and combining them to form emulsions were determined:
 - Water-in-oil and oil-in-water + surfactant emulsions were both formed and transported.
- Demonstrated how to overcome liquid pinning and capillary forces to move droplets (including low-surface-tension fluids) from a narrowly spaced parallel-plate electrode design to a wider separation for dielectrophoresis (DEP) centering.
- Future work will be to add a polystyrene monomer and photoinitiator to the oil phase to make a polystyrene shell.