An optimal Vlasov-Fokker-Planck solver for simulation of kinetic ICF plasmas

L. Chacón¹, W.T. Taitano², A.N. Simakov²

¹T-5, Applied mathematics and plasma physics group
²XCP-6, plasma theory and applications group

Thermonuclear Burn Initiative

Kinetic Effects in ICF Workshop
Livermore, CA, April 5-7 2016
Outline

- Motivations and challenges of fully kinetic ion simulations

- Enabling Technologies
 - Fully implicit time stepping + scalable solver (MG precond JFNK)
 - Exact discrete conservation properties
 - Phase-space adaptivity: v_{th} adaptivity + Lagrangian mesh

- Progress report: verification, spherical geometry (shocks), kinetic effects at interfaces
Kinetic effects may be important in ICF

Figure from M.J. Rosenberg, PRL (2014)
We consider fully kinetic ions + fluid electrons

\[
\frac{Df_i}{Dt} \equiv \frac{\partial f_i}{\partial t} + \vec{v} \cdot \nabla f_i + \vec{a}_i \cdot \nabla_v f_i = \sum_j C_{ij} (f_i, f_j)
\]

Vlasov-Fokker-Planck

\[
C_{ij} (f_i, f_j) = \Gamma_{ij} \nabla_v \cdot \left[D_j \cdot \nabla_v f_i - \frac{m_i}{m_j} A_j f_i \right]
\]

\[
D_j = \nabla_v \nabla_v G_j \quad A_j = \nabla_v H_j
\]

\[
\nabla_v^2 H_j (\vec{v}) = -8\pi f_j (\vec{v})
\]

\[
\nabla_v^2 G_j (\vec{v}) = H_j (\vec{v})
\]

Fluid electrons

\[
\frac{3}{2} \partial_t (n_e T_e) + \frac{5}{2} \partial_x (u_e n_e T_e) - u_e \partial_x (n_e T_e) - \partial_x \kappa_e \partial_x T_e = \sum_{\alpha} C_{e\alpha}
\]

\[
n_e = -q_e^{-1} \sum q_\alpha n_\alpha \quad u_e = -q_e^{-1} n_e^{-1} \sum_{\alpha \neq e} q_\alpha n_\alpha u_\alpha
\]

Electric field model: e pressure, friction, thermal forces

\[
E = -\frac{\nabla p_e + \sum_i F_{ie}}{en_e} = -\frac{\nabla p_e}{en_e} - \frac{\alpha_0 (Z_{eff}) m_e}{e} \sum_i \nu_{ei} (\vec{V}_e - \vec{V}_i) - \frac{\beta_0 (Z_{eff})}{e} \nabla T_e
\]
ICF kinetic simulation tools are sparse

- French CEA’s FPion [1] and FUSE [2] codes:
 - Semi-implicit ($\Delta t \sim \tau_{\text{col}}$ e.g. can’t study pusher mix)
 - Adaptive grid (r-v), but non-conservative, single-species velocity
- Recent implosion calculation using the LSP code [3]
 - Hybrid PIC code
 - Difficulties with spherical geometry
 - Nanbu collision operator (suspect when using $\Delta t > \tau_{\text{col}}$ [4])
- Our approach:
 - Fully nonlinearly implicit ($\Delta t >> \tau_{\text{col}}$)
 - Multispecies adaptive grid (r-v) using local thermal velocity/species
 - Fully conservative (mass, momentum, energy)

Challenges of fully kinetic simulations for ICF

- Disparate temperatures during implosion dictate velocity resolution.
 - $v_{\text{th, max}}$ determines L_v
 - $v_{\text{th, min}}$ determines Δv

- Shock width and capsule size dictate physical space resolution
Numerical resolution challenges

- **Phase space resolution challenges**
 - Intra species $v_{\text{th, max}} / v_{\text{th, min}} \sim 100$
 - Inter species $(v_{\text{th, } \alpha} / v_{\text{th, } \beta})_{\text{max}} \sim 30$
 - $N_v \sim [10(v_{\text{th, max}}/v_{\text{th, min}}) \times (v_{\text{th, } \alpha} / v_{\text{th, } \beta})]^2 \sim 10^9$
 - $N_r \sim 10^3 - 10^4$
 - $N = N_r N_v \sim 10^{12} - 10^{13}$ unknowns

- **Temporal resolution challenges**
 - $t_{\text{sim}} = 1$ ns
 - $N_t = 10^9$ time steps
 - $\Delta t_{\text{exp}}^{\text{coll}} \sim \frac{1}{10} \left(\frac{\Delta v}{v_{\text{th}}^{\text{min}}} \right)^2 v^{-1}_{\text{coll}} \sim 10^{-9}$ ns
Our approach: Implicit time-stepping and adaptive meshing, exact conservation properties

- **Mesh adaptivity**: \(\hat{v} = \frac{v}{v_{th,\alpha}} \)
 - \(v \)-space adaptivity with \(v_{th} \) normalization, \(N_v \sim 10^4 \cdot 10^5 \)
 - Lagrangian mesh in physical space, \(N_r \sim 10^2 \)
 - \(N = N_v N_r \sim 10^6 \cdot 10^7 \)

- **Implicit time-stepping**:
 - JFNK nonlinear solver
 - Multigrid preconditioning [1,2]
 - \(\Delta t_{imp} = \Delta t_{str} \sim 10^{-3} \) ns, \(N_t \sim 10^3 \cdot 10^4 \)

- **Exact conservation properties** (nonlinear discretization)

Implicit time-stepping for collision operator: nonlinear solver and preconditioning

- JFNK as nonlinear solver [3]:

\[f^k = f^{k-1} - J^k R^{k-1} \]

\[R = \partial_t f_\alpha - \sum_{\beta} \nabla \cdot \left[\overline{D}_\beta \cdot \nabla v f_\alpha - \overline{A}_\beta f_\alpha \right] \]

- Right preconditioning strategy:

\[J^k \left(P^{k-1} \right)^{-1} P^{k-1} \delta f^k = -R^{k-1} \]

- Block diagonalization with lagged coefficients:

\[P^{k-1} = \partial_t \circ - \sum_{\beta} \nabla \cdot \left[\overline{D}_\beta \cdot \nabla v \circ - \overline{A}_\beta \circ \right] \]

MG preconditioner keeps linear iterations bounded

<table>
<thead>
<tr>
<th>N_y</th>
<th>(Preconditioned Krylov/Δt)$_{avg}$</th>
<th>(Unpreconditioned Krylov/Δt)$_{avg}$</th>
<th>$\Delta t/\Delta t_{exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>128×64</td>
<td>2.7</td>
<td>3.9</td>
<td>6.25</td>
</tr>
<tr>
<td>256×128</td>
<td>2.8</td>
<td>7.5</td>
<td>28.6</td>
</tr>
<tr>
<td>512×256</td>
<td>2.7</td>
<td>12.6</td>
<td>122.0</td>
</tr>
</tbody>
</table>

$\Delta t = 10^{-3} = 2.4 \times 10^{-2} \tau_{cold}$

<table>
<thead>
<tr>
<th>N_y</th>
<th>(Preconditioned Krylov/Δt)$_{avg}$</th>
<th>(Unpreconditioned Krylov/Δt)$_{avg}$</th>
<th>$\Delta t/\Delta t_{exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>128×64</td>
<td>3.2</td>
<td>15.7</td>
<td>62.5</td>
</tr>
<tr>
<td>256×128</td>
<td>3.2</td>
<td>38.6</td>
<td>286</td>
</tr>
<tr>
<td>512×256</td>
<td>3.2</td>
<td>101.3</td>
<td>1220</td>
</tr>
</tbody>
</table>

$\Delta t = 10^{-2} = 2.4 \times 10^{-1} \tau_{cold}$

<table>
<thead>
<tr>
<th>N_y</th>
<th>(Preconditioned Krylov/Δt)$_{avg}$</th>
<th>(Unpreconditioned Krylov/Δt)$_{avg}$</th>
<th>$\Delta t/\Delta t_{exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>128×64</td>
<td>4.9</td>
<td>72*</td>
<td>625</td>
</tr>
<tr>
<td>256×128</td>
<td>4.3</td>
<td>228*</td>
<td>2860</td>
</tr>
<tr>
<td>512×256</td>
<td>4.4</td>
<td>783*</td>
<td>12200</td>
</tr>
</tbody>
</table>

$\Delta t = 10^{-1} = 2.4 \tau_{cold}$

<table>
<thead>
<tr>
<th>N_y</th>
<th>(Preconditioned Krylov/Δt)$_{avg}$</th>
<th>(Unpreconditioned Krylov/Δt)$_{avg}$</th>
<th>$\Delta t/\Delta t_{exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>128×64</td>
<td>8.7†</td>
<td>–</td>
<td>6250</td>
</tr>
<tr>
<td>256×128</td>
<td>7.7†</td>
<td>–</td>
<td>28600</td>
</tr>
<tr>
<td>512×256</td>
<td>9.0†</td>
<td>–</td>
<td>122000</td>
</tr>
</tbody>
</table>

$\Delta t = 10^{0} = 24 \tau_{cold}$

Los Alamos National Laboratory
Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED
Implicit solver performance is $O(N_v)$!

4 orders of magnitude more efficient than explicit methods

Solver CPU time versus size of unknown

Exact energy conservation in collision operator is critical for accuracy

- For demonstration, we consider electron-proton thermalization

- More details in Taitano’s talk
Adaptivity in velocity space: v_{th} adaptivity

- Resolved hot distribution
- Under-resolved cold distribution
- Resolved cold distribution

Static Mesh

v_{th} adaptive Mesh

$\frac{dv_{th}}{dt} > 0$

$\frac{dv_{th}}{dt} < 0$
Adaptivity in physical space: Lagrangian mesh evolves with capsule
Phase-space mesh adaptivity: exact transformation of FP equation

1D spherical (with logical mesh); 2D cylindrical geometry in velocity space

Coordinate transformation:

\[\hat{v}_\parallel \equiv \frac{v \cdot r}{v_{th,\alpha}}, \quad \hat{v}_\perp \equiv \sqrt{v^2 - v_\parallel^2} \]

Jacobian of transformation:

\[\sqrt{g_v}(t, r, \hat{v}_\perp) \equiv v_{th,\alpha}^3(t, r) r^2 \hat{v}_\perp \]

\[J_{r\xi} = \partial_\xi r \]
Fokker-Planck equation: inertial terms

• VRFP equation in transformed coordinates

\[
\partial_t \left(\sqrt{g_v} J_r \xi f_\alpha \right) + \partial_\xi \left(\sqrt{g_v} v_{th,\alpha} \left[\hat{v}_\parallel - \hat{r}_\alpha \right] f_\alpha \right) + \\
\partial_{\hat{v}_\parallel} \left(J_r \xi \sqrt{g_v} \hat{v}_\parallel f_\alpha \right) + \partial_{\hat{v}_\perp} \left(J_r \xi \sqrt{g_v} \hat{v}_\perp f_\alpha \right) = J_r \xi \sqrt{g_v} \sum_{\beta}^{N_s} C_{\alpha\beta} \left(f_\alpha, f_\beta \right)
\]

\[
\hat{v}_\parallel = -\frac{\hat{v}_\parallel}{2} \left(v_{th,\alpha}^{-2} \partial_t v_{th,\alpha}^2 + J_r^{-1} \left(\hat{v}_\parallel - \hat{x} \right) v_{th,\alpha}^{-1} \partial_\xi v_{th,\alpha}^2 \right) + \frac{\hat{v}_\perp^2 v_{th,\alpha}}{r} + \frac{q_\alpha E_{\parallel}}{J_r \xi m_\alpha v_{th,\alpha}}
\]

\[
\hat{v}_\perp = -\frac{\hat{v}_\perp}{2} \left(v_{th,\alpha}^{-2} \partial_t v_{th,\alpha}^2 + J_r^{-1} \left(\hat{v}_\parallel - \hat{x} \right) v_{th,\alpha}^{-1} \partial_\xi v_{th,\alpha}^2 \right) + \frac{\hat{v}_\parallel \hat{v}_\perp v_{th,\alpha}}{r}
\]

Inertial terms due to \(v_{th} \) adaptivity and Lagrangian mesh
Energy conservation in inertial terms is also critical for long-term accuracy.
v_{th} adaptivity enables realistic simulations of multispecies plasmas

- D-e-α, 3 species thermalization problem
- Resolution with static grid:
 \[
 N_v \sim 2 \left(\frac{v_{th,e,\infty}}{v_{th,D,0}} \right) ^2 = 140000 \times 70000
 \]
- Resolution with adaptivity and asymptotics:
 \[
 N_v = 128 \times 64
 \]
- Mesh savings of $\sim 10^6$
Summary

• Developed a fully implicit, optimal Fokker-Planck solver

• Features phase-space adaptivity, optimal implicit time-stepping, and exact conservation properties
 – MG preconditioned nonlinear solver
 – Exact transformation of FP equation (no remapping)
 – Careful conservative discretization (next talk)

• As a result, we save many orders of magnitude in total simulation time
Current and Future Focus

- Both Lagrangian mesh and spherical geometry are implemented and being characterized

- Performing extensive verification campaign with shock propagation in planar and spherical geometry (next talk)

- Carry out planar geometry simulation campaign (this FY)

- Prepare for spherical ICF simulations (next FY)
BACKUP SLIDES
Questions?
How does ICF work?

Laser Irradiation
Surface blowoff
fuel
capsule
Rocket force
compression
to high T, ρ
Rosenbluth-Fokker-Planck collision operator: simultaneous conservation of mass, momentum, and energy
Rosenbluth-FP collision operator: conservation properties results from symmetries

\[C_{\alpha\beta} = \Gamma_{\alpha\beta} \nabla_v \cdot \left[\vec{J}_{\alpha\beta,G} - \frac{m_\alpha}{m_\beta} \vec{J}_{\alpha\beta,H} \right] \]

Mass

\[\langle 1, C_{\alpha\beta} \rangle_{\vec{v}} = 0 \quad \Rightarrow \quad \vec{J}_{\alpha\beta,G} - \vec{J}_{\alpha\beta,H} \bigg|_{v} = 0 \]

Momentum

\[m_\alpha \langle \vec{v}, C_{\alpha\beta} \rangle_{\vec{v}} = -m_\beta \langle \vec{v}, C_{\beta\alpha} \rangle_{\vec{v}} \quad \Rightarrow \quad \langle 1, J_{\alpha\beta,G} - J_{\beta\alpha,H} \rangle_{\vec{v}} = 0 \]

Energy

\[m_\alpha \left\{ \langle v^2, C_{\alpha\beta} \rangle_{\vec{v}} \right\} = -m_\beta \left\{ \langle v^2, C_{\beta\alpha} \rangle_{\vec{v}} \right\} \quad \Rightarrow \quad \langle \vec{v}, J_{\beta\alpha,G} - J_{\alpha\beta,H} \rangle_{\vec{v}} = 0 \]
2V Rosenbluth-FP collision operator: numerical conservation of energy

- The symmetry to enforce is:
 \[\left\langle \vec{v}, \vec{J}_{\beta\alpha,G} - \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}} = 0 \]

- Due to discretization error:
 \[\left\langle \vec{v}, \vec{J}_{\beta\alpha,G} - \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}} = O(\Delta v) \]

- Introduce a constraint coefficient:
 \[\left\langle \vec{v}, \gamma_{\beta\alpha} \vec{J}_{\beta\alpha,G} - \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}} = 0 \]
 \[\gamma_{\beta\alpha} = \frac{\left\langle \vec{v}, \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}}}{\left\langle \vec{v}, \vec{J}_{\beta\alpha,G} \right\rangle_{\vec{v}}} = 1 + O(\Delta v) \]

\[C_{\alpha\beta} = \Gamma_{\alpha\beta} \nabla_{\vec{v}} \cdot \left[\gamma_{\alpha\beta} \vec{J}_{\alpha\beta,G} - \frac{m_{\alpha}}{m_{\beta}} \vec{J}_{\alpha\beta,H} \right] \]
2V Rosenbluth-FP collision operator: numerical conservation of momentum+energy

- Simultaneous conservation of momentum and energy:

\[
C_{\alpha\beta} = \Gamma_{\alpha\beta} \nabla_v \cdot \left[\eta_{\alpha\beta} \cdot \vec{J}_{\alpha\beta,G} - \frac{m_\alpha}{m_\beta} \vec{J}_{\alpha\beta,H} \right]
\]

with:

\[
\eta_{\alpha\beta} = \begin{bmatrix}
\gamma_{\alpha\beta} + \epsilon_{||,\alpha\beta} & 0 \\
0 & \gamma_{\alpha\beta}
\end{bmatrix}
\]

\[
\gamma_{\alpha\beta} = \frac{\langle \vec{v}, \vec{J}_{H,\beta \alpha} \rangle_{\vec{v}} - \epsilon_{||,\alpha\beta}^+ \langle \vec{v}, \vec{J}_{G,\alpha\beta} \rangle_{\vec{v}}^{+\infty}}{\langle \vec{v}, \vec{J}_{G,\alpha\beta} \rangle_{\vec{v}}}
\]

\[
\epsilon_{\alpha\beta} = \begin{cases}
\epsilon_{||,\alpha\beta}^- = 0 & \text{if } v_{||} - u_{\text{avg},||,\alpha\beta} \leq 0 \\
\epsilon_{||,\alpha\beta}^+ = \frac{\langle 1, \vec{J}_{H,\beta \alpha,||} \rangle_{\vec{v}} - \gamma_{\alpha\beta} \langle 1, \vec{J}_{G,\alpha\beta,||} \rangle_{\vec{v}}^{+\infty}}{\langle 1, \vec{J}_{G,\alpha\beta,||} \rangle_{\vec{v} - \vec{u}_{\text{avg},\alpha\beta}}^{+\infty}} & \text{else}
\end{cases}
\]
Numerical Results: Single-species initial random distribution thermalizes to a Maxwellian.

PDF_1, extrema=(0.000e+00, 2.993e+01)

PDF_1, extrema=(-8.838e-10, 1.035e+00)

PDF_1, extrema=(4.319e-14, 7.458e-01)
Numerical Results:
Conservation properties enforced down to nonlinear convergence tolerance
Vlasov equation: Inertial term simultaneous conservation of mass, momentum, and energy
FP equation with adaptivity in velocity space: Temporal inertial terms

- Focus on temporal inertial terms due to normalization wrt $v_{th}(r,t)$ (OD):

$$v_{th, \alpha}^2 \frac{\partial \hat{f}_\alpha}{\partial t} - \frac{\partial t v_{th, \alpha}^2}{2} \nabla_v \cdot \left(\hat{\nu} \hat{f}_\alpha \right) = 0$$

- Mass conservation can be trivially shown by 0^{th} velocity space moment:

$$v_{th}^2 \frac{\partial n_\alpha}{\partial t} = 0$$
Find symmetry in continuum and enforce via using discrete nonlinear constraints (similar to collisions)

\[v_{th,\alpha}^2 \frac{\partial \hat{f}_\alpha}{\partial t} - \frac{\partial v_{th,\alpha}^2}{2} \nabla_v \cdot (\hat{v}\hat{f}_\alpha) = 0 \]

Rewrite as:

\[\partial_t \left(v_{th,\alpha}^2 \hat{f}_\alpha \right) - \partial_t v_{th,\alpha}^2 \left[\hat{f}_\alpha + \frac{\nabla_v}{2} \cdot (\hat{v}\hat{f}_\alpha) \right] = 0 \]

Energy conservation shown from 2nd velocity moment:

\[\frac{\partial U_\alpha}{\partial t} = 0 \]

This property relies on:

\[\left\langle \hat{v}^2, \hat{f}_\alpha + \frac{1}{2} \nabla_v \cdot (\hat{v}\hat{f}_\alpha) \right\rangle_{\hat{v}} = 0 \]

This property must be enforced numerically:

\[\left\langle \hat{v}^2, \hat{f}_\alpha + \frac{\gamma_{t,\alpha}}{2} \nabla_v \cdot (\hat{v}\hat{f}_\alpha) \right\rangle_{\hat{v}} = 0 \quad \gamma_{t,\alpha} = -\frac{\left\langle \hat{v}^2, \hat{f}_\alpha \right\rangle_{\hat{v}}}{\left\langle \hat{v}^2, \frac{1}{2} \nabla_v \cdot (\hat{v}\hat{f}_\alpha) \right\rangle_{\hat{v}}} \]
All conservation law can be enforced via recursive application of chain rule

\[
v_{th,\alpha}^2 \frac{\partial \hat{f}_\alpha}{\partial t} - \frac{\partial v_{th,\alpha}^2}{2} \nabla_v \cdot (\hat{v} \hat{f}_\alpha) = 0
\]

- Rewrite as:

\[
\partial_t \left(v_{th,\alpha}^2 \hat{f}_\alpha \right) - \partial_t v_{th,\alpha}^2 \left[\hat{f}_\alpha + \gamma_{t,\alpha} \nabla_v \cdot (\hat{v} \hat{f}_\alpha) \right] + \xi_{t,\alpha} = 0
\]

\[
\xi_{t,\alpha} = v_{th,\alpha} \left\{ \partial_t \left(v_{th,\alpha} \hat{f}_\alpha \right) - \partial_t v_{th,\alpha} \left[\hat{f}_\alpha + \nabla_v \cdot (\hat{v} \hat{f}_\alpha) \right] \right\} + \eta_{t,\alpha}
\]

\[
\eta_{t,\alpha}(v) = \left\{ v_{th,\alpha}^2 \partial_t \hat{f}_\alpha - \partial_t v_{th,\alpha}^2 \nabla_v \cdot (\hat{v} \hat{f}_\alpha) \right\} - v_{th,\alpha} \left\{ \partial_t \left(v_{th,\alpha} \hat{f}_\alpha \right) - \partial_t v_{th,\alpha} \left[\hat{f}_\alpha + \nabla_v \cdot (\hat{v} \hat{f}_\alpha) \right] \right\}
\]
Asymptotic Formulation of Interspecies Collisions for $v_{\text{th}, f} >> v_{\text{th}, s}$

Argument of exp: $v_f/v_{\text{th}, s} >> 1$

$$H_s = \frac{n_s}{v} + \frac{n_s V_s \cdot v}{v^3} + \cdots$$

$$G_s = n_s v - \frac{n_s V_s \cdot v}{v} + \nabla_v \nabla_v v : \left(\frac{1}{2} \int d^3 v' f'_s v' v' \right) + \cdots$$

Argument of exp: $v_s/v_{\text{th}, f} << 1$

$$H_f = v \cdot \left(\int d^3 v' f'_f v' \right) + \frac{1}{2} v v : \left(\int d^3 v' f'_f \nabla_{v'} \nabla_{v'} \left(\frac{1}{v'} \right) \right)$$

$$- \frac{1}{6} v v v : \left(\int d^3 v' f'_f \nabla_{v'} \nabla_{v'} \nabla_{v'} \left(\frac{1}{v'} \right) \right)$$

$$+ \frac{1}{24} v v v v : \left(\int d^3 v' f'_f \nabla_{v'} \nabla_{v'} \nabla_{v'} \nabla_{v'} \left(\frac{1}{v'} \right) \right) + \cdots$$

$$G_f = \frac{1}{2} v v : \left(\int d^3 v' f'_f \nabla_{v'} \nabla_{v'} v' v' \right) - \frac{1}{6} v v v : \left(\int d^3 v' f'_f \nabla_{v'} \nabla_{v'} \nabla_{v'} \nabla_{v'} \left(\frac{1}{v'} \right) \right)$$

$$+ \frac{1}{24} v v v v : \left(\int d^3 v' f'_f \nabla_{v'} \nabla_{v'} \nabla_{v'} \nabla_{v'} \nabla_{v'} \left(\frac{1}{v'} \right) \right) + \cdots$$

1D2V Mach 5 shock agrees well with known reference solution

M=5 planar steady state shock solution (SSS) comparison between iFP (solid line) and reference solution from [10] (open circles).

Test of Lagrangian mesh capability for a M=5 shock in lab frame. A good agreement in solutions between Lagrangian mesh and SSS is achieved.
Spherical geometry is being tested

Test of spherical shock convergence. Shock reflection is observed.
More moments for Lagrangian mesh
Stably and accurately integrate with $\Delta t \gg \tau_{\text{col}}$

Test of implicit solver with D-Al interface problem with $\Delta t = 4 \times 10^4 \tau_{\text{col}}$.
Velocity space adaption does not help for interspecies collisions

- For electron-ion collisions, $v_{th,e}/v_{th,i} >> 1$

- Similarly, for α-ion collisions, $v_{th,\alpha}/v_{th,\text{i}} >> 1$

- Very stringent mesh resolution requirements if determining potentials via:
 \[
 \nabla_{\vec{v}}^2 H_j (\vec{v}) = -8\pi f_j (\vec{v}) \quad \nabla_{\vec{v}}^2 G_j (\vec{v}) = H_j (\vec{v})
 \]

- Mesh requirement grows as:
 \[
 N_{\vec{v}}^d \propto \left(\frac{v_{th,f}}{v_{th,s}} \right)^d
 \]

- Velocity space adaption helps **ONLY** for self-species, but not for interspecies! We need asymptotics
Asymptotics: Fast on slow

- Asymptotic potentials diverge as $v \to 0$
- Solution: Near $v = 0$, we **coarse-grain** slow potentials to modify singularity

$$H_{fs} = \begin{cases} H_{fs,asy} & \text{if } \vec{v}_f \not\in \Omega_{TCR} \\ \left\langle H_{ss} \right\rangle_{\Omega_{TCR}} & \text{else} \end{cases}$$

$$\left\langle H_{ss} \right\rangle_{\Omega_{TCR}} = \frac{\int_{\Omega_{TCR}} H_{ss} d^3v}{\int_{\Omega_{TCR}} d^3v}$$

$$\nabla^2_{v} G_{fs} = H_{fs}$$
Numerical Results: Two-species thermal and momentum equilibration
Numerical Results:
Conservation is enforced down to nonlinear tolerance
Non-Maxwellian effects for hot-cold proton thermalization

PDF_2, extrema=(1.065e-43, 1.793e-01)

Initial Condition

PDF_2, extrema=(2.466e-43, 1.074e+00)

With positivity

PDF_2, extrema=(-1.949e-02, 1.394e+00)

Without positivity
Our approach: nonlinearly implicit, adaptive, conserving Rosenbluth-VFP (cont.)

- Why Rosenbluth-VFP?
- Linearization and/or the use of asymptotic approximations of collision operators are not warranted in these systems:
 - Linearization is not allowed because deviations from Maxwellian can be significant (Kn ~ 0.1 in fuel, boundary effects at material boundaries)
 - Ion thermal velocities are comparable to Gamow peak at bang time ($v_{th}/v_G \sim 1/\sqrt{3}$)
 - Multiple ion species with similar mass and temperatures
- Nonlinear Rosenbluth-VFP allows for first-principles simulations
Static uniform mesh is not practical

- Temperature disparities of 10^4 (for a single species)
 $$\frac{v_{th}^{max}}{v_{th}^{min}} \sim 100$$
- 10 points per $v_{th} \Rightarrow \Delta v \sim v_{th}^{min}/10$
 $$N_v \sim (v_{th}^{max}/\Delta v)^2 \sim 10^6$$
- For multiple species (e.g. alpha-D/T)
 $$N_v^* \sim N_v 30^2 \sim 10^9$$
- Static spatial resolution:
 $$N_r \sim 10^3 - 10^4$$

$$N \sim N_v^* \times N_r \sim 10^{12} - 10^{13}$$
Challenges of Rosenbluth-VFP: temporal stiffness. Explicit method are impractical

• Collision frequency dictates explicit time step:

\[\Delta t_{exp}^{coll} \sim \frac{\Delta v^2}{D} \sim \frac{\Delta v^2}{v_{th}v_{coll}} \]

• Typical conditions at end of compression phase:

\[\Delta t_{exp}^{coll} \sim \frac{1}{10} \left(\frac{\Delta v}{v_{th}^{min}} \right)^2 v_{coll}^{-1} \sim 10^{-9} \text{ ns} \]

\[N \Delta t \sim 10^{10} \]
Our approach: nonlinearly implicit, adaptive, conserving Rosenbluth-VFP

- Adaptive meshing to alleviate mesh requirements:
 - Velocity space adaptivity via renormalization ($N_v \sim 10^4-10^5$)
 $$\hat{v} = \frac{v}{v_{th}(r, t)}$$
 - Spatial adaptivity via Lagrangian mesh ($N_r \sim 10^2$)

\[N = N_v \times N_r \sim 10^6 - 10^7 \]

- Strict conservation properties (mass, momentum, energy).
Logo choices

OR

OR