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We run detailed post-shot simulations for several reasons

=  Understand the sources of performance degradation in current
implosions

=  Quantitatively compare “best effort” simulations against the data to see
where we agree and disagree — and by how much

=  Use our semi-validated understanding to project the best ways to

improve performance
P P higher power/

high foot thinner shell

low foot

This talk surveys the status of high foot post-shot modeling with an eye to where we disagree
with the data and where additional effects outside of the current model might be important
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Our best 2-D and 3-D simulations give a fair representation of
the high foot data but do not capture all of the trends

= 2-D simulations including the known
perturbations (asyms., tent, etc.)
match Y, for some shots but are ~ 2X
too high for others.

= 3-D simulations of the highest power
shots match the yield within 20 -
30%.

= 3-D simulations are still low in T, ,

and high in DSR but only just outside
of the error bars.
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= The tent and hohlraum asymmetries are the largest degradation sources.
Uncertainties in these are probably the best place to look for explaining our
discrepancies, but uncertainties in the micro-physics are also a possibility.
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Our simulations are constrained by data and validated against
dedicated experiments wherever possible

Drive characterization in-flight shape Code comparison
Early drive Shell trajectory

Miranda (High-
l order Eulerian)
HYDRA
Hot-spot shape {03
Shock velocities ’

viscous/inviscid

symmetry

Used to constrain models & drive on capsule

Hydrodynamics validation

Ablation front growth
B Interface growth

Stagnation
hydrodynamics

Used to validate models against experiments
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Our best 2-D simulations include the tent, surface roughness, and
hohlraum asymmetries tuned to match VISAR data, 2-D ConA

data, and the hot spot P,/P,

2.50E+16 0.3

2.00E+16 | / 0.1 /
c | 0 -
P 1.50E+16 /\1140120

7 o N140520
- r ' AT/
2 i 02 A0 N130927
@ 1.00E+16 |

expt. x-ray P,/P,

N140520 N140120 i 03 X 130812
A A . —
1119" /é
A a N140819 04 | FN131M™1

5.00E+15 I / - A / NTOTTTY
I N130927 -0.5

“ N130812

0.00E+00 “— 06
0.00E+00 5.00E+15 1.00E+16 1.50E+16 2.00E+16 2.50E+16 06 05 04 03 02 04 0 04 02 03

sim. Y, sim. x-ray P,/P,

These simulations match Y/, for low energy shots reasonably well but are high by 2 —
3X for the higher energy shots.
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Rerunning the four outliers in 3-D roughly brings Y, into
agreement and P,/P, is unchanged
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But 2-D and 3-D both under predict T, , compared to the data
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The 2-D T,,, values are properly time-averaged over the burn, but the 3-D values are
instantaneous at bang time.
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Rerunning the lowest T, , cases with the DT thermal conductivity
reduced by half improves the agreement for both T, and Y,
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This is a very simple modification to the DT conductivity, but a factor of two
uncertainty is not unreasonable.
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Rerunning the lowest T, , cases with the DT thermal conductivity
reduced by half improves the agreement for both T, and Y,
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This is a very simple modification to the DT conductivity, but a factor of two
uncertainty is not unreasonable.
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P, and M, are nearly within the error bars while the DSR is
slightly high and the burn widths are slightly short
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Where are the largest sources of uncertainty in current
simulations and can kinetics play a role?

= Uncertainties in the magnitudes of the two largest degradation sources (the
tent and the hohlraum asymmetries) are probably the largest drivers for the
current discrepancies/uncertainties

— We are working to improve our understanding of both of these

=  However, given our current understanding, altering the hot spot thermal
conductivity does seem to improve the agreement with the data

— There is considerable sensitivity here and the uncertainties are large, but
there are many candidates for causing this: degeneracy, B-fields,...

— Inglebert et al., EPL (2014) has shown that hot spot kinetics can also
have a similar effect (raise T, , and Y,). Is this what we are seeing?

= |n 1-D, Steve Haan has shown a degeneracy in our sensitivity to conductivity
and dE/dx uncertainties in terms of Y, vs. T,

— Should we be be looking at dE/dx uncertainties instead of conductivity?
Can we tell the two apart?
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Our best 2-D and 3-D simulations give a fair representation of
the high foot data but do not capture all of the trends

= 2-D simulations including the known
perturbations (asyms., tent, etc.)
match Y, for some shots but are ~ 2X
too high for others.

= 3-D simulations of the highest power
shots match the yield within 20 -
30%.

= 3-D simulations are still low in T, ,

and high in DSR but only just outside
of the error bars.
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= The tent and hohlraum asymmetries are the largest degradation sources.
Uncertainties in these are probably the best place to look for explaining our
discrepancies, but uncertainties in the micro-physics are also a possibility.
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We have assembled a simulation data base of six high foot shots

that cover a scaling in power, energy, and thickness
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Four of the six have been run in 3-D as well as 2-D: N130927, N140120, N140520,

and N140819.
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2-D sims. with the tent, roughness, and tuned asymmetries are ~

2X too highinY_, 20% too lowinT
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2-D simulations are close to the measured PNI P, but 3-D
simulations are too low
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The 2-D values are properly time-averaged over the burn, but the 3-D values are
instantaneous at bang time.
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2-D and 3-D simulations are also close to the measured PNI P,/
PO
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The 2-D values are properly time-averaged over the burn, but the 3-D values are
instantaneous at bang time.
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2-D simulations are close to the measured DSNI P, but 3-D

simulations are too low
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The 2-D values are properly time-averaged over the burn, but the 3-D values are
instantaneous at bang time.
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