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Executive summary 

For the successful generation of ion-beam-driven high energy density matter and heavy ion fusion 
energy, intense ion beams must be transported and focused onto a target with small spot size. One 
of the successful approaches to achieve this goal is to accelerate and transport intense ion charge 
bunches in an accelerator and then focus the charge bunches ballistically in a section of the 
accelerator that contains a neutralizing background plasma. This requires the ability to control 
space-charge effects during un-neutralized (non-neutral) beam transport in the accelerator and 
transport sections, and the ability to effectively neutralize the space charge and current by 
propagating the beam through background plasma. As the beam intensity and energy are increased 
in future heavy ion fusion (HIF) drivers and Fast Ignition (FI) approaches, it is expected that 
nonlinear processes and collective effects will become much more pronounced than in previous 
experiments. Making use of 3D electromagnetic particle-in-cell simulation (PIC) codes (BEST, 
WARP-X, and LTP-PIC, etc.), the theory and modelling studies will be validated by comparing 
with experimental data on the 100kV Princeton Advanced Test Stand, and future experiments at 
the FAIR facility. The theoretical predictions that are developed will be scaled to the beam and 
plasma parameters relevant to heavy ion fusion drivers and Fast Ignition scenarios. Therefore, the 
theoretical results will also contribute significantly toward the long-term goal of fusion energy 
production by ion-beam-driven inertial confinement fusion. The proposed research places special 
emphasis on addressing critical scientific issues in the following areas: 
• Theoretically study collective beam-plasma interactions during longitudinal and transverse 

compression of the beam pulse for the HIF driver; and identify and mitigate the effects of 
collective beam-plasma interactions during compression of the beam pulse; 

• Identify existing available ion beam facilities where modeling results can be validated; 
• Develop, test and apply advanced plasma sources that produce sufficiently dense plasma for 

intense ion beam neutralization that are compatible with accelerator vacuum requirements;  
• Experimentally validate the feasibility of heavy ion beams based on negative ions; develop 

reliable theoretical models describing the effects of ion-atom collisions on the lifetime of 
negative ions in the accelerator; and study the fundamental properties of ion-ion plasmas 
produced on the Princeton Advanced Test Stand (PATS) facility;  

• Develop models describing the nonlinear dynamics of intense non-neutral ion beams with the 
goal of minimizing deleterious collective effects and instabilities and optimizing ion beam 
transport and focusing in the non-neutral section of the accelerator system;  
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• Develop and test innovative beam delivery and instability control techniques to maximize the 
focused beam intensity on target, including the use of oscillating wobbler fields in the final 
focus system for beam smoothing and facilitate uniform deposition on the target on FAIR 
facility, and scaling the concept to heavy ion  fusion driver systems. 
 

Background and Motivation 

Charged particle beams produced in accelerators have a number of attractive features as potential 
drivers for IFE, and as a component in FI approaches [1,2].  To summarize the Refs. [1,2] HIF 
drivers can deliver high energy pulses more directly to a fusion target; they have high efficiency 
(>20% wall plug to beam); favorable final optic protection in a future reactor chamber; 
demonstrated long life of accelerator components; relatively high repetition rates (>10 Hz), etc. 
However, for HIF drivers the power requirements far exceed levels achieved in modern 
accelerators. White paper [2] is addressing ability to scale the accelerators to the HIF driver 
power levels.  

A principal aim of the proposed research effort is to address the following compelling scientific 
questions as they pertain to ion-beam-driven High Energy Density Physics (HEDP) and HIF: 

• How can heavy ion beams be compressed to the high intensities required to create high 
energy density matter and fusion conditions? 

• How are intense charged-particle beams transported and focused? 
 

An important long-term objective of the proposed U.S. HIF program is to provide a 
comprehensive scientific knowledge base and the enabling technologies required for IFE driven 
by high-brightness heavy ion beams, while the major near-term objective is to explore the limits 
of compressing ion charge bunches to very short pulses for purposes of investigating ion-driven 
HEDP and Warm Dense Matter (WDM) physics. A fundamental understanding of nonlinear 
space-charge effects on the propagation, acceleration and compression of high-brightness (high-
current and low-emittance) heavy ion beams is essential to the identification of optimal operating 
regimes in which emittance growth and beam losses are minimized in periodic focusing 
accelerators and transport systems for applications of intense heavy ion beams to HEDP and IFE.  

Short Overview of the Current Status  

For the successful generation of ion-beam-driven high energy density matter and heavy ion 
fusion energy, intense ion beams must be transported and focused onto a target with small spot 
size. One of the successful approaches to achieve this goal is to accelerate and transport intense 
ion charge bunches in an accelerator and then focus the charge bunches ballistically in a section 
of the accelerator that contains neutralizing background plasma. This requires the ability to 
control space-charge effects during un-neutralized (non-neutral) beam transport in the accelerator 
and transport sections, and the ability to effectively neutralize the space charge and current by 
propagating the ion beam pulse through background plasma.  

The High Current Experiment (HCX) was a very successful proof-of-principle experiment that 
demonstrated that intense ion beams with large space charge of up to several kV can be routinely 
transported and focused as un-neutralized beams to a spot size of a few mm diameter [3]. 
Another important series of experiments in HCX showed that electron clouds produced by 
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background gas or surface ionization can be cleared from the ion beam pulse by making use of 
clearing electrodes or quadrupole magnetic fields, even for high-current ion beams [4].  

The Neutralized Drift Compression Experiments -I and II (NDCX) were also a very successful 
proof-of-principle experiment that demonstrated the ability to longitudinally compress the beam 
current by a factor of up to 100, and transversely focus the neutralized ion beam from a 3 cm 
radius down to a few mm spot size [5]. By producing a background plasma with density large 
compared to the beam density, it was shown experimentally, theoretically, and in numerical 
simulations that the beam space charge and current can be neutralized to a sufficiently high 
degree to provide a very high degree of ballistic focusing [6].  

The background plasma was created by ferroelectric plasma sources developed at PPPL which 
produced high density plasma (up to 1015 cm-3) near the walls of the plasma source, and then 
filled the neutralized transport section of the NDCX-I device with plasma with density up to 1011 
cm-3 [7]. The plasma density in the central region was adequate for neutralized beam transport in 
the neutralized drift section of NDCX. There were four additional plasma sources based on 
vacuum cathodic arc technology that were employed near the target to increase the plasma 
density in the focal plane of the compressing beam pulse for better neutralization in this region.  
It was shown experimentally that individual plasma jets streaming from the periphery region of 
the strong solenoidal magnetic field near the focal plane can fill the center of the transport region 
with plasma and neutralize the ion beam pulse [8]. The mechanisms for plasma penetration 
across the magnetic field are still not fully understood. One possible mechanism is the time-
dependent nature of the external solenoidal magnetic field, which is affected by eddy currents in 
the nearby metal walls. Another possible mechanism may be plasma instabilities that provide 
anomalous transport of the plasma across the magnetic field [9].  

Theoretical analyses and PIC modeling have been performed to describe (i) beam transport in the 
unneutralized (nonneutral) section of the accelerator [10], and (ii) quasi-steady-state propagation 
of the neutralized beam pulse in a background plasma [11]. Possible collective instabilities 
associated with the large beam space charge in both the neutralized and unneutralized sections 
have been surveyed, and the linear growth of several collective instabilities have been calculated. 
For the most robust instabilities, the nonlinear stage of instability has been simulated using both 
particle-in-cell and nonlinear delta-f codes [12]. Examples include: the two-stream instability 
between the beam ions and the background plasma electrons in the neutralized drift section of 
the accelerator; and the Harris and Weibel instabilities in the unneutralized section of the 
accelerator. The Harris and Weibel instabilities can lead to longitudinal emittance growth due to 
a coupling through a collective 3D mode between the longitudinal and transverse degrees of 
freedom of particle motion.  For the neutralized drift transport section, two-stream electrostatic 
and electromagnetic instabilities have also been analyzed [12]. For parameters in the NDCX and 
HCX experiments, it was shown that the growth rates (exponentiation lengths) were sufficiently 
slow (long) that these instabilities were not of concern in these experiments [13]. 

Experiments at PATS showed that very high degree of neutralization can be achieved due to 
accumulation of cold electrons in the beam path [14] and further confirmed by recent 
experiments [15].  

Important details on limitation of neutralization of an ion beam pulse by emission by filaments 
was investigated recently making use of 2D [16] and 3D PIC [17]. It was found that solitary and 
surface waves are excited in the process of neutralization and can affect the remaining space 
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charge. Another important finding was that 3D simulations can be needed to adequately describe 
the process [17]. It is timely that there has been robust development of high-performance PIC 
codes (Chaos [17], Warp-X [18], LTP-PIC [19]) that can be used effectively to simulate these 
complex phenomena. The white paper [20] describes planned modeling efforts using Warp-X 
code.    

Research Objectives  

As the beam intensity and energy in the HIF driver are increased compared to the previous 
NDCX experiments, it is expected that nonlinear processes and collective effects will become 
much more pronounced, therefore critical scientific issues needs to be addressed: 

High-brightness heavy ion beam transport in accelerator: Develop a basic understanding of the 
limits on beam space charge imposed by gas and electron cloud effects, together with beam 
matching and magnet nonlinearities, and determine the effects of collective interactions on beam 
quality and transport. 

Longitudinal and transverse compression of intense ion beams: Develop a basic understanding 
of the limits on longitudinal compression within neutralizing background plasma, and the effects 
of beam-plasma instabilities over distances required for focusing in the chamber. Develop a basic 
understanding of the limits on transverse compression and focal spot size set by chromatic 
aberrations due to uncompensated velocity spreads from upstream longitudinal compression, and 
the beam emittance growth from imperfect charge neutralization and beam-plasma interactions. 

The theory and modeling studies need to be validated making use of experimental data on the 
100kV Princeton Advanced Test Stand (PATS), past data available from the NDCX facility, and 
new experimental data to be obtained from experiments on the FAIR facility or others [1]. The 
theoretical predictions that are developed will be scaled to the beam and plasma parameters 
relevant to heavy ion fusion drivers. Therefore, the theoretical results will also contribute 
significantly toward the long-term goal of fusion energy production by ion-beam-driven ICF. 

Research Thrusts  

Emphasis is placed on the following Research Thrusts relevant to ion-beam-driven HEDP and 
HIF:  

Thrust Area #1 – Develop effective neutralization and focusing schemes for neutralized beam 
transport in HIF drivers  

The key research objectives in this area are to design and test advanced plasma sources for robust 
neutralization of intense ion charge bunches and to perform a feasibility study of practical 
implementation of novel plasma sources for neutralized drift sections in current and future heavy 
ion accelerator systems with a long lifetime and low cost. Specific research tasks include: 
Demonstrate that the beam charge and current can be controlled or neutralized during neutralized 
drift compression by judicious choice of background plasma parameters; Demonstrate that 
collective instabilities can be controlled or mitigated during neutralized drift compression by 
profiling the plasma density or magnetic field; and Study the neutralization process and effects of 
transients on beam emittance during beam entry into the plasma.  

A further research objective in this thrust area is to design and test advanced collective focusing 
schemes [21] in the PATS and other available high energy density laboratory physics facilities, 
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which effectively utilize the large self-electric fields of the beam pulse and do not require large 
focusing magnets. 

Thrust Area #2 – Develop innovative beam driver concepts for energy delivery in heavy ion 
fusion systems using negative ion beams extracted from ion -- ion plasmas 

In order to avoid possible electron cloud effects and charge exchange effects many linear 
accelerators use negative ions instead of positive ions. Consequently, the research objective in 
this thrust area is to develop a comprehensive justification for the use of negative ion beams for 
heavy ion fusion drivers and propose experimental tests of the concept based on halogen 
negative ions on the Princeton Advanced Test Stand [22].  

Thrust Area #3 – Minimize deleterious collective effects and optimize ion beam transport and 
focusing in nonneutral section of accelerator system 

The research objective in this thrust area is to demonstrate that the large space charge in the ion 
charge bunch can be transported quiescently through the non-neutral section of the accelerator 
system for driver-scale parameters. The specific research tasks include: Investigate transverse 
emittance growth due to coupling of collective modes with focusing element misalignments and 
beam mismatch; Study longitudinal emittance growth due in finite-length charge bunches due to 
collective effects and instabilities such as the Harris instability [23]; Design achromatic focusing 
system for simultaneous transverse and longitudinal compression on future heavy-ion-driver 
scale facility [24]. 

Thrust Area #4 – Develop innovative beam delivery and instability control techniques to 
optimize target performance 

The research objective in this thrust area is to investigate the use of oscillating electric fields in 
wobbler system and innovative beam delivery methods for beam smoothing technique to 
mitigate instabilities and facilitate uniform deposition on the target. Specific research tasks 
include develop wobbler design concepts for beam smoothing and the Rayleigh-Taylor 
instability control in driver-scale systems [25]. 

Conclusion 

Heavy-ion-beam drivers offer number of advantages as potential drivers for IFE. Initial 
experimental study successfully addressed critical issues of controlling instabilities and large 
space charge of the driver beam in past HCX and NDCX experiments. Further progress can be 
achieved by combined experimental, modeling and theoretical research efforts. Princeton Test 
Stand is available at PPPL and can be used to test innovative concepts such us collective 
focusing, negative ion beams, neutralization by filaments and undersense plasma [26], and for 
development innovative plasma sources for neutralization [27].  

Future experiments on focusing of intense ion beams at FAIR [1], DARHT [28] and other 
facilities will provide sufficient data to validate well established theories of space charge and 
current neutralization by plasma and in combination with the use of high-performance PIC 
simulations [18, 19] will enable well-grounded designs of Heavy Ion Fusion Driver [2].  
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