Target Gas Density Calculator
Concept, Usage & Limitations

NIF Users’ Forum

Dean Holunga, PhD
Cryo Ops Process Engineer

Originally authored by Jim Fair, PhD

Updated October 15, 2020
Why Have a Gas Density Calculator?

- In 2012, it was realized that the non-ideality of subcritical THD gas mixtures exceeded the allowable uncertainty of the capsule density.
 - Why? Conversion from density to pressure was not accurate using the Ideal Gas Law alone.
 - Jim Fair authored the first calculator that calculated the density of the isotopic mixtures of hydrogen and helium.
 - Other gases & gas mixtures being shot are similarly non-ideal. E.g., Neopentane.

- Primary purpose
 - To calculate an accurate conversion of density (mg/cm³) to pressure (torr) in target gas fill requests.
 - To quantify the non-ideal behavior of subcritical or high pressure gases and gas mixtures.

- Secondary purposes
 - To predict the equilibrium of THD mixtures (H₂, D₂, T₂, HD, HT, DT) from cryogenic to room temperature.
 - To predict the atomic particle density (atoms/cm³).
Model Approach To Non-Ideality Corrections

- **Virial Coefficient Corrections to the Ideal Gas Law**

 \[z = \frac{P}{RT\rho_m} \approx 1 + B\rho_m + C\rho_m^2 + \ldots \]

 - Mixing Rules (generally accepted for B, but not universally accepted for C)

 - **2nd Virial Coefficient** – for low pressure, low temp or moderate pressure, high temperature gases

 \[B_{ij} = \frac{(B_i + B_j)}{2} \]

 \[B_{\text{mix}} = \sum_{i=1}^{N} \gamma_i B_{ii} + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \gamma_i \gamma_j \delta_{ij} \]

 \[\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \]

 - **3rd Virial Coefficient** – for high pressure gases near critical temperature

 \[C_{ijk} = \frac{(c_i + c_j + c_k)}{3} \]

 \[C_{\text{mix}} = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \gamma_i \gamma_j \gamma_k C_{ijk} \]
Caveats

- How good are the predictions? As good as the data.
 - E.g., Vapor pressure. Sources include:
 - Correlations from NIST
 - Compilation of literature data – polynomial fit
 - Antoine equation
 - THD Virial Coefficients
 - 2nd VC - High Confidence:
 - From PIMC models, which match historical data from Souers, Sherwood, Reed, Grilly and others, and is valid from 15K through RT.
 - 3rd VC - Unproven:
 - Is estimated using H\textsubscript{2} 3rd VC data and a corresponding states mapping (about T\textsubscript{r}) from the 2nd VCs.

- Programming sanity checks is time consuming
 - Use your own judgment and knowledge of the materials being studied.
 - When in doubt, call me.
Using the Density Calculator (Demo)

- Case 1: D$_2$-Filled HDC Symcap shot (N151025-001)
- Case 2: How do I request a specific density/mixture?
- Case 3: Post shot re-verification
Using the Density Calculator – Case 1

- D₂-Filled HDC Symcap shot (N151025-001)
 - Original desired density:
 - 4 mg/cc at 32K
 - AppMan Request
 - 1486 Torr at 24K
 - Fielded Capsule
 - Liquid Deuterium
 - What red flags existed?
Using the Density Calculator (Case 2)

- **Case 2: How do I request a specific density/mixture?**
 - 10 mg/cc of D$_2$ at 32K
 - Answer should be immediately available
 - 10 mg/cc of 0.4 at% D-3He at 32K
 - 10 mg/cc of 50:50 DT at 32K
 - Mac: must click solver button
 - 10 mg/cc of 2/24/74 HDT at 32K
 - Mac: must click solver button
Using the Density Calculator (Demo)

- **Case 3: Post shot analysis**
 - Requested: 10 mg/cc of 0.75/0.25 HT at 32K
 - Calculator indicates: 5022 Torr at 32K.
 - Cryo Reports on !DATA:
 - 5069 Torr
 - Mass Spec Analysis
 - 74% H
 - 25% T
 - 1% D
 - Calculator (trial & error)
 - 10.21 mg/cc at 32K
 - NOTE: 75/25 from calculator is 10.13 mg/cc
Current ELM Version is NIF-0135638-AJ or v2.8

- Recently added/changed features
 - On the PC version, the THD Equilibrium Calculator is now “live,” no need to hit a reset & run-macro button
 - Seems to work for three-component THD mixtures.
 - Uses a pragmatic “forced-mass-balance” scheme to converge the equilibrium expressions.
 - Science fiction checks
 - Polynomial correlation of saturated vapor density of THD.
 - Color coding: an indication of when an estimate is violating something
 - **Green** is good
 - **Red** is bad
 - Any other color: **Use with Caution**
 - Data may be extrapolated or near some critical value (e.g., saturation temp, valid range of vapor pressure expression, etc.)

- If its broken, or if the calculator doesn’t have a mixture or material that is of interest, contact me.